IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6624-d911593.html
   My bibliography  Save this article

Short-Term Solar Power Forecasting via General Regression Neural Network with Grey Wolf Optimization

Author

Listed:
  • Chia-Sheng Tu

    (School of Mechanical and Electrical Engineering, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China)

  • Wen-Chang Tsai

    (School of Mechanical and Electrical Engineering, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China)

  • Chih-Ming Hong

    (Department of Electronic Communication Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan)

  • Whei-Min Lin

    (School of Mechanical and Electrical Engineering, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China)

Abstract

With the increasing awareness of environmental protection and the support of national policy, as well as the maturing of solar power generation technology, solar power generation has become one of the most promising renewable energies. However, due to changes in external factors such as season, time, weather, cloud cover, etc., solar radiation is uncertain, and it is difficult to predict energy output, even for the next hour. This inherent instability is a particularly difficult issue for the prediction of energy output in the effective operation of solar power systems. This paper proposes a grey wolf optimization (GWO)-based general regression neural network (GRNN), which is expected to provide more accurate predictions with shorter computational times. Therefore, a self-organizing map (SOM) is utilized to realize the weather clustering and the training of the GRNN with a GWO model. The performance of the proposed model is investigated using short-term and ultra-short-term forecasting in different seasons. It is very important to accurately predict the PV power output. Moreover, the numerical results demonstrate that the proposed approach can significantly enhance the prediction accuracy of PV systems.

Suggested Citation

  • Chia-Sheng Tu & Wen-Chang Tsai & Chih-Ming Hong & Whei-Min Lin, 2022. "Short-Term Solar Power Forecasting via General Regression Neural Network with Grey Wolf Optimization," Energies, MDPI, vol. 15(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6624-:d:911593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6624/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6624/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Barbosa de Alencar & Carolina De Mattos Affonso & Roberto Célio Limão de Oliveira & Jorge Laureano Moya Rodríguez & Jandecy Cabral Leite & José Carlos Reston Filho, 2017. "Different Models for Forecasting Wind Power Generation: Case Study," Energies, MDPI, vol. 10(12), pages 1-27, November.
    2. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    3. Gangqiang Li & Huaizhi Wang & Shengli Zhang & Jiantao Xin & Huichuan Liu, 2019. "Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach," Energies, MDPI, vol. 12(13), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.
    2. Tserenpurev Chuluunsaikhan & Jeong-Hun Kim & Yoonsung Shin & Sanghyun Choi & Aziz Nasridinov, 2022. "Feasibility Study on the Influence of Data Partition Strategies on Ensemble Deep Learning: The Case of Forecasting Power Generation in South Korea," Energies, MDPI, vol. 15(20), pages 1-20, October.
    3. Hubert Szczepaniuk & Edyta Karolina Szczepaniuk, 2022. "Applications of Artificial Intelligence Algorithms in the Energy Sector," Energies, MDPI, vol. 16(1), pages 1-24, December.
    4. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    5. Wen-Chang Tsai & Chih-Ming Hong & Chia-Sheng Tu & Whei-Min Lin & Chiung-Hsing Chen, 2023. "A Review of Modern Wind Power Generation Forecasting Technologies," Sustainability, MDPI, vol. 15(14), pages 1-40, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    2. Ze Wu & Feifan Pan & Dandan Li & Hao He & Tiancheng Zhang & Shuyun Yang, 2022. "Prediction of Photovoltaic Power by the Informer Model Based on Convolutional Neural Network," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    3. Li, Chengdong & Zhou, Changgeng & Peng, Wei & Lv, Yisheng & Luo, Xin, 2020. "Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method," Energy, Elsevier, vol. 212(C).
    4. Kaitong Wu & Xiangang Peng & Zilu Li & Wenbo Cui & Haoliang Yuan & Chun Sing Lai & Loi Lei Lai, 2022. "A Short-Term Photovoltaic Power Forecasting Method Combining a Deep Learning Model with Trend Feature Extraction and Feature Selection," Energies, MDPI, vol. 15(15), pages 1-20, July.
    5. Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
    6. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    7. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    8. Yang, Hufang & Jiang, Ping & Wang, Ying & Li, Hongmin, 2022. "A fuzzy intelligent forecasting system based on combined fuzzification strategy and improved optimization algorithm for renewable energy power generation," Applied Energy, Elsevier, vol. 325(C).
    9. Kuk Yeol Bae & Han Seung Jang & Bang Chul Jung & Dan Keun Sung, 2019. "Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.
    10. Yin, Linfei & Zhang, Bin, 2023. "Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems," Applied Energy, Elsevier, vol. 330(PA).
    11. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    12. Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
    13. Mariz B. Arias & Sungwoo Bae, 2021. "Solar Photovoltaic Power Prediction Using Big Data Tools," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    14. Camelo, Henrique do Nascimento & Lucio, Paulo Sérgio & Leal Junior, João Bosco Verçosa & Carvalho, Paulo Cesar Marques de & Santos, Daniel von Glehn dos, 2018. "Innovative hybrid models for forecasting time series applied in wind generation based on the combination of time series models with artificial neural networks," Energy, Elsevier, vol. 151(C), pages 347-357.
    15. Ji-Won Cha & Sung-Kwan Joo, 2021. "Probabilistic Short-Term Load Forecasting Incorporating Behind-the-Meter (BTM) Photovoltaic (PV) Generation and Battery Energy Storage Systems (BESSs)," Energies, MDPI, vol. 14(21), pages 1-19, October.
    16. G. Ponkumar & S. Jayaprakash & Karthick Kanagarathinam, 2023. "Advanced Machine Learning Techniques for Accurate Very-Short-Term Wind Power Forecasting in Wind Energy Systems Using Historical Data Analysis," Energies, MDPI, vol. 16(14), pages 1-24, July.
    17. Tayeb Brahimi, 2019. "Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia," Energies, MDPI, vol. 12(24), pages 1-16, December.
    18. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    19. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Chia-Sheng Tu & Chih-Ming Hong & Hsi-Shan Huang & Chiung-Hsing Chen, 2020. "Short Term Wind Power Prediction Based on Data Regression and Enhanced Support Vector Machine," Energies, MDPI, vol. 13(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6624-:d:911593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.