IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i7p1622-1628.html
   My bibliography  Save this article

Daily solar irradiation estimation over a mountainous area using artificial neural networks

Author

Listed:
  • Bosch, J.L.
  • López, G.
  • Batlles, F.J.

Abstract

In order to design both active and passive solar energy systems, radiation data are needed for the studied location. The implementation of such renewable energy systems is especially important in places like natural parks, where acoustic and fossil fuel derived contamination has to be completely avoided. Measure of solar radiation is usually accomplished by means of radiometric station nets with a low spatial resolution. To estimate the radiation in sites located away from the stations, different interpolation/extrapolation techniques may be used. These methods are valid on places where the spatial variability of radiation is not significant, but becomes less accurate if complex terrain areas are present in between the radiometric stations. As an alternative, artificial intelligence techniques have been used in this work, along with a 20m resolution digital model of terrain. The inputs to the network have been selected using the automatic relevance determination methodology. The data set contains 3 years’ data of daily global radiation measured at 12 different stations located in the north face of the Sierra Nevada National Park in the surroundings of Huéneja (Granada), a town located in the South East of Spain. The stations altitude varies from 1000 to 1700m. The goal of this work has been to estimate daily global irradiation on stations located in a complex terrain, and the values estimated by the neural network model have been compared with the measured ones leading to a root mean square error (RMSE) of 6.0% and a mean bias error (MBE) of 0.2%, both expressed as a percentage of the mean value. Performance achieved individually for each of the stations lies in the range [5.0–7.5]% for the RMSE and [−1.2 to +2.1]% for the MBE. Results point out artificial neural networks as an efficient and easy methodology for calculating solar radiation levels over complex mountain terrains from only one radiometric station data. In addition, this methodology can be applied to other areas with a complex topography.

Suggested Citation

  • Bosch, J.L. & López, G. & Batlles, F.J., 2008. "Daily solar irradiation estimation over a mountainous area using artificial neural networks," Renewable Energy, Elsevier, vol. 33(7), pages 1622-1628.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:7:p:1622-1628
    DOI: 10.1016/j.renene.2007.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107002881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López, G. & Batlles, F.J. & Tovar-Pescador, J., 2005. "Selection of input parameters to model direct solar irradiance by using artificial neural networks," Energy, Elsevier, vol. 30(9), pages 1675-1684.
    2. Mohandes, M. & Rehman, S. & Halawani, T.O., 1998. "Estimation of global solar radiation using artificial neural networks," Renewable Energy, Elsevier, vol. 14(1), pages 179-184.
    3. Sözen, Adnan & Arcaklioglu, Erol, 2005. "Solar potential in Turkey," Applied Energy, Elsevier, vol. 80(1), pages 35-45, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kisi, Ozgur, 2014. "Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach," Energy, Elsevier, vol. 64(C), pages 429-436.
    2. Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
    3. Kumar, Rajesh & Aggarwal, R.K. & Sharma, J.D., 2015. "Comparison of regression and artificial neural network models for estimation of global solar radiations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1294-1299.
    4. Zarzo, Manuel & Martí, Pau, 2011. "Modeling the variability of solar radiation data among weather stations by means of principal components analysis," Applied Energy, Elsevier, vol. 88(8), pages 2775-2784, August.
    5. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    6. Azadeh, A. & Ghaderi, S.F. & Maghsoudi, A., 2008. "Location optimization of solar plants by an integrated hierarchical DEA PCA approach," Energy Policy, Elsevier, vol. 36(10), pages 3993-4004, October.
    7. Jabar H. Yousif & Hussein A. Kazem & John Boland, 2017. "Predictive Models for Photovoltaic Electricity Production in Hot Weather Conditions," Energies, MDPI, vol. 10(7), pages 1-19, July.
    8. Hejase, Hassan A.N. & Al-Shamisi, Maitha H. & Assi, Ali H., 2014. "Modeling of global horizontal irradiance in the United Arab Emirates with artificial neural networks," Energy, Elsevier, vol. 77(C), pages 542-552.
    9. Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    10. Mostafavi, Elham Sadat & Ramiyani, Sara Saeidi & Sarvar, Rahim & Moud, Hashem Izadi & Mousavi, Seyyed Mohammad, 2013. "A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran," Energy, Elsevier, vol. 49(C), pages 204-210.
    11. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    12. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    13. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    14. Tasadduq, Imran & Rehman, Shafiqur & Bubshait, Khaled, 2002. "Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia," Renewable Energy, Elsevier, vol. 25(4), pages 545-554.
    15. Marzo, A. & Trigo-Gonzalez, M. & Alonso-Montesinos, J. & Martínez-Durbán, M. & López, G. & Ferrada, P. & Fuentealba, E. & Cortés, M. & Batlles, F.J., 2017. "Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation," Renewable Energy, Elsevier, vol. 113(C), pages 303-311.
    16. Alonso, J. & Batlles, F.J., 2014. "Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery," Energy, Elsevier, vol. 73(C), pages 890-897.
    17. Azadeh, A. & Babazadeh, R. & Asadzadeh, S.M., 2013. "Optimum estimation and forecasting of renewable energy consumption by artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 605-612.
    18. Chao-Rong Chen & Unit Three Kartini, 2017. "k-Nearest Neighbor Neural Network Models for Very Short-Term Global Solar Irradiance Forecasting Based on Meteorological Data," Energies, MDPI, vol. 10(2), pages 1-18, February.
    19. Mubiru, J., 2008. "Predicting total solar irradiation values using artificial neural networks," Renewable Energy, Elsevier, vol. 33(10), pages 2329-2332.
    20. Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:7:p:1622-1628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.