IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p985-d1036987.html
   My bibliography  Save this article

Comparison of Wavelet Artificial Neural Network, Wavelet Support Vector Machine, and Adaptive Neuro-Fuzzy Inference System Methods in Estimating Total Solar Radiation in Iraq

Author

Listed:
  • Wongchai Anupong

    (Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Muhsin Jaber Jweeg

    (College of Technical Engineering, Al-Farahidi University, Baghdad 10001, Iraq)

  • Sameer Alani

    (The University of Mashreq, Baghdad 10001, Iraq)

  • Ibrahim H. Al-Kharsan

    (Computer Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf 54001, Iraq)

  • Aníbal Alviz-Meza

    (Grupo de Investigación en Deterioro de Materiales, Transición Energética y Ciencia de datos DANT3, Facultad de Ingenieria y Urbanismo, Universidad Señor de Sipán, Km 5 Via Pimentel, Chiclayo 14001, Peru)

  • Yulineth Cárdenas-Escrocia

    (GIOPEN, Energy Optimization Research Group, Energy Department, Universidad de la Costa (CUC), Cl. 58 ##55-66, Barranquilla 080016, Atlántico, Colombia)

Abstract

Estimating the amount of solar radiation is very important in evaluating the amount of energy that can be received from the sun for the construction of solar power plants. Using machine learning tools to estimate solar energy can be a helpful method. With a high number of sunny days, Iraq has a high potential for using solar energy. This study used the Wavelet Artificial Neural Network (WANN), Wavelet Support Vector Machine (WSVM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques to estimate solar energy at Wasit and Dhi Qar stations in Iraq. RMSE, EMA, R 2 , and IA criteria were used to evaluate the performance of the techniques and compare the results with the actual measured value. The results showed that the WANN and WSVM methods had similar results in solar energy modeling. However, the results of the WANN technique were slightly better than the WSVM technique. In Wasit and Dhi Qar stations, the value of R 2 for the WANN and WSVM methods was 0.89 and 0.86, respectively. The value of R 2 in the WANN and WSVM methods in Wasit and Dhi Qar stations was 0.88 and 0.87, respectively. The ANFIS technique also obtained acceptable results. However, compared to the other two techniques, the ANFIS results were lower, and the R 2 value was 0.84 and 0.83 in Wasit and Dhi Qar stations, respectively.

Suggested Citation

  • Wongchai Anupong & Muhsin Jaber Jweeg & Sameer Alani & Ibrahim H. Al-Kharsan & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Comparison of Wavelet Artificial Neural Network, Wavelet Support Vector Machine, and Adaptive Neuro-Fuzzy Inference System Methods in Estimating Total Solar Radiation in Iraq," Energies, MDPI, vol. 16(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:985-:d:1036987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sajna Parimita Panigrahi & Sarat Kumar Maharana & Thejaraju Rajashekaraiah & Ravichandran Gopalashetty & Mohsen Sharifpur & Mohammad Hossein Ahmadi & C. Ahamed Saleel & Mohamed Abbas, 2022. "Flat Unglazed Transpired Solar Collector: Performance Probability Prediction Approach Using Monte Carlo Simulation Technique," Energies, MDPI, vol. 15(23), pages 1-17, November.
    2. Mohsen Sharifpur & Mohammad Hossein Ahmadi & Jaroon Rungamornrat & Fatimah Malek Mohsen, 2022. "Thermal Management of Solar Photovoltaic Cell by Using Single Walled Carbon Nanotube (SWCNT)/Water: Numerical Simulation and Sensitivity Analysis," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    3. Abbas Afshar & Elham Soleimanian & Hossein Akbari Variani & Masoud Vahabzadeh & Amir Molajou, 2022. "The conceptual framework to determine interrelations and interactions for holistic Water, Energy, and Food Nexus," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10119-10140, August.
    4. Urooj Asgher & Muhammad Babar Rasheed & Ameena Saad Al-Sumaiti & Atiq Ur-Rahman & Ihsan Ali & Amer Alzaidi & Abdullah Alamri, 2018. "Smart Energy Optimization Using Heuristic Algorithm in Smart Grid with Integration of Solar Energy Sources," Energies, MDPI, vol. 11(12), pages 1-26, December.
    5. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    6. Elnaz Sharghi & Vahid Nourani & Hessam Najafi & Amir Molajou, 2018. "Emotional ANN (EANN) and Wavelet-ANN (WANN) Approaches for Markovian and Seasonal Based Modeling of Rainfall-Runoff Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3441-3456, August.
    7. Amir Molajou & Vahid Nourani & Abbas Afshar & Mina Khosravi & Adam Brysiewicz, 2021. "Optimal Design and Feature Selection by Genetic Algorithm for Emotional Artificial Neural Network (EANN) in Rainfall-Runoff Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2369-2384, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.
    2. Luis O. Lara-Cerecedo & Jesús F. Hinojosa & Nun Pitalúa-Díaz & Yasuhiro Matsumoto & Alvaro González-Angeles, 2023. "Prediction of the Electricity Generation of a 60-kW Photovoltaic System with Intelligent Models ANFIS and Optimized ANFIS-PSO," Energies, MDPI, vol. 16(16), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    2. Oriza Candra & Abdeljelil Chammam & José Ricardo Nuñez Alvarez & Iskandar Muda & Hikmet Ş. Aybar, 2023. "The Impact of Renewable Energy Sources on the Sustainable Development of the Economy and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(3), pages 1-11, January.
    3. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    4. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Chitchai Srithapon & Prasanta Ghosh & Apirat Siritaratiwat & Rongrit Chatthaworn, 2020. "Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
    6. Mina Khosravi & Abbas Afshar & Amir Molajou, 2022. "Decision Tree-Based Conditional Operation Rules for Optimal Conjunctive Use of Surface and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2013-2025, April.
    7. Mohammad Ehteram & Ali Najah Ahmed & Chow Ming Fai & Haitham Abdulmohsin Afan & Ahmed El-Shafie, 2019. "Accuracy Enhancement for Zone Mapping of a Solar Radiation Forecasting Based Multi-Objective Model for Better Management of the Generation of Renewable Energy," Energies, MDPI, vol. 12(14), pages 1-26, July.
    8. Banhidarah, Abdullah Khamis & Al-Sumaiti, Ameena Saad & Wescoat, James L. & Nguyen, Hoach The, 2020. "Electricity-water usage for sustainable development: An analysis of United Arab Emirates farms," Energy Policy, Elsevier, vol. 147(C).
    9. Xing Zhang & Zhuoqun Wei, 2019. "A Hybrid Model Based on Principal Component Analysis, Wavelet Transform, and Extreme Learning Machine Optimized by Bat Algorithm for Daily Solar Radiation Forecasting," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    10. Thamer Alquthami & Ahmad H. Milyani & Muhammad Awais & Muhammad B. Rasheed, 2021. "An Incentive Based Dynamic Pricing in Smart Grid: A Customer’s Perspective," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    11. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    12. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    13. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    14. Wang, Yuhan & Zhang, Chu & Fu, Yongyan & Suo, Leiming & Song, Shihao & Peng, Tian & Shahzad Nazir, Muhammad, 2023. "Hybrid solar radiation forecasting model with temporal convolutional network using data decomposition and improved artificial ecosystem-based optimization algorithm," Energy, Elsevier, vol. 280(C).
    15. Mostafa Rezaeimozafar & Mohsen Eskandari & Mohammad Hadi Amini & Mohammad Hasan Moradi & Pierluigi Siano, 2020. "A Bi-Layer Multi-Objective Techno-Economical Optimization Model for Optimal Integration of Distributed Energy Resources into Smart/Micro Grids," Energies, MDPI, vol. 13(7), pages 1-25, April.
    16. Jun Su & Zhiyuan Zeng & Chaolong Tang & Zhiquan Liu & Tianyou Li, 2024. "A Photovoltaic Fault Diagnosis Method Integrating Photovoltaic Power Prediction and EWMA Control Chart," Energies, MDPI, vol. 17(17), pages 1-22, August.
    17. Vahid Nourani & Nardin Jabbarian Paknezhad & Hitoshi Tanaka, 2021. "Prediction Interval Estimation Methods for Artificial Neural Network (ANN)-Based Modeling of the Hydro-Climatic Processes, a Review," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    18. Ghoroghi, Ali & Petri, Ioan & Rezgui, Yacine & Alzahrani, Ateyah, 2023. "A deep learning approach to predict and optimise energy in fish processing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    19. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    20. Muhammad Arshad Shehzad Hassan & Ussama Assad & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Dynamic Price-Based Demand Response through Linear Regression for Microgrids with Renewable Energy Resources," Energies, MDPI, vol. 15(4), pages 1-17, February.

    More about this item

    Keywords

    solar energy; WANN; WSVM; ANFIS;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:985-:d:1036987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.