IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i7-8p1222-1228.html
   My bibliography  Save this article

Estimation of solar radiation over Turkey using artificial neural network and satellite data

Author

Listed:
  • Senkal, Ozan
  • Kuleli, Tuncay

Abstract

This study introduces artificial neural networks (ANNs) for the estimation of solar radiation in Turkey (26-45 E and 36-42Â N). Resilient propagation (RP), Scale conjugate gradient (SCG) learning algorithms and logistic sigmoid transfer function were used in the network. In order to train the neural network, meteorological data for the period from August 1997 to December 1997 for 12 cities (Antalya, Artvin, Edirne, Kayseri, Kütahya, Van, Adana, Ankara, Istanbul, Samsun, Izmir, DiyarbakIr) spread over Turkey were used as training (nine stations) and testing (three stations) data. Meteorological and geographical data (latitude, longitude, altitude, month, mean diffuse radiation and mean beam radiation) are used in the input layer of the network. Solar radiation is the output. However, solar radiation has been estimated as monthly mean daily sum by using Meteosat-6 satellite C3 D data in the visible range over 12 cities in Turkey. Digital counts of satellite data were converted into radiances and these are used to calculate the albedos. Using the albedo, the cloud cover index of each pixel was constructed. Diffuse and direct component of horizontal irradiation were calculated as a function of optical air mass, turbidity factor and Rayleigh optical thickness for clear-sky. Using the relation between clear-sky index and cloud cover index, the solar irradiance for any pixel is calculated for Physical method. RMS between the estimated and ground values for monthly mean daily sum with ANN and Physical method values have been found as 2.32Â MJÂ m-2 (54Â W/m2) and 2.75Â MJÂ m-2 (64Â W/m2) (training cities), 3.94Â MJÂ m-2 (91Â W/m2) and 5.37Â MJÂ m-2 (125Â W/m2) (testing cities), respectively.

Suggested Citation

  • Senkal, Ozan & Kuleli, Tuncay, 2009. "Estimation of solar radiation over Turkey using artificial neural network and satellite data," Applied Energy, Elsevier, vol. 86(7-8), pages 1222-1228, July.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1222-1228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00157-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohandes, M.A. & Halawani, T.O. & Rehman, S. & Hussain, Ahmed A., 2004. "Support vector machines for wind speed prediction," Renewable Energy, Elsevier, vol. 29(6), pages 939-947.
    2. Sözen, Adnan & Arcakliog[caron]lu, Erol, 2005. "Effect of relative humidity on solar potential," Applied Energy, Elsevier, vol. 82(4), pages 345-367, December.
    3. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    4. Sözen, Adnan & Arcaklioglu, Erol & Özalp, Mehmet & Kanit, E. Galip, 2004. "Use of artificial neural networks for mapping of solar potential in Turkey," Applied Energy, Elsevier, vol. 77(3), pages 273-286, March.
    5. Junfeng, Li & Wan, Yih-huei & Ohi, James M., 1997. "Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential," Applied Energy, Elsevier, vol. 56(3-4), pages 381-394, March.
    6. Bulut, Hüsamettin, 2004. "Typical solar radiation year for southeastern Anatolia," Renewable Energy, Elsevier, vol. 29(9), pages 1477-1488.
    7. Mohandes, M. & Rehman, S. & Halawani, T.O., 1998. "Estimation of global solar radiation using artificial neural networks," Renewable Energy, Elsevier, vol. 14(1), pages 179-184.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Kevin K.W. & Tang, H.L. & Yang, Liu & Lam, Joseph C., 2008. "An analysis of thermal and solar zone radiation models using an Angstrom–Prescott equation and artificial neural networks," Energy, Elsevier, vol. 33(7), pages 1115-1127.
    2. Jabar H. Yousif & Hussein A. Kazem & John Boland, 2017. "Predictive Models for Photovoltaic Electricity Production in Hot Weather Conditions," Energies, MDPI, vol. 10(7), pages 1-19, July.
    3. Sözen, Adnan & Arcaklioglu, Erol & Özkaymak, Mehmet, 2005. "Turkey's net energy consumption," Applied Energy, Elsevier, vol. 81(2), pages 209-221, June.
    4. Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
    5. Sözen, Adnan & Ali Akçayol, M., 2004. "Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle," Applied Energy, Elsevier, vol. 79(3), pages 309-325, November.
    6. Sözen, Adnan & Arcakliog[caron]lu, Erol, 2005. "Effect of relative humidity on solar potential," Applied Energy, Elsevier, vol. 82(4), pages 345-367, December.
    7. Fadare, D.A., 2010. "The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria," Applied Energy, Elsevier, vol. 87(3), pages 934-942, March.
    8. Sözen, Adnan & Arcaklioglu, Erol, 2005. "Solar potential in Turkey," Applied Energy, Elsevier, vol. 80(1), pages 35-45, January.
    9. Sözen, Adnan & Arcaklıoğlu, Erol & Özalp, Mehmet & Çağlar, Naci, 2005. "Forecasting based on neural network approach of solar potential in Turkey," Renewable Energy, Elsevier, vol. 30(7), pages 1075-1090.
    10. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    11. Mubiru, J., 2008. "Predicting total solar irradiation values using artificial neural networks," Renewable Energy, Elsevier, vol. 33(10), pages 2329-2332.
    12. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    13. Zhao, Yang & Wang, Shengwei & Xiao, Fu, 2013. "Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)," Applied Energy, Elsevier, vol. 112(C), pages 1041-1048.
    14. Elminir, Hamdy K. & Azzam, Yosry A. & Younes, Farag I., 2007. "Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models," Energy, Elsevier, vol. 32(8), pages 1513-1523.
    15. Hejase, Hassan A.N. & Al-Shamisi, Maitha H. & Assi, Ali H., 2014. "Modeling of global horizontal irradiance in the United Arab Emirates with artificial neural networks," Energy, Elsevier, vol. 77(C), pages 542-552.
    16. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    17. Jiang, Yingni, 2008. "Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models," Energy Policy, Elsevier, vol. 36(10), pages 3833-3837, October.
    18. Sözen, Adnan & Arcaklioglu, Erol & Özalp, Mehmet & Kanit, E. Galip, 2005. "Solar-energy potential in Turkey," Applied Energy, Elsevier, vol. 80(4), pages 367-381, April.
    19. Arcaklioglu, Erol & Çelikten, Ismet, 2005. "A diesel engine's performance and exhaust emissions," Applied Energy, Elsevier, vol. 80(1), pages 11-22, January.
    20. Kisi, Ozgur, 2014. "Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach," Energy, Elsevier, vol. 64(C), pages 429-436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1222-1228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.