Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2010.01.029
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Al-Alawi, S.M. & Al-Hinai, H.A., 1998. "An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation," Renewable Energy, Elsevier, vol. 14(1), pages 199-204.
- Rivington, M. & Matthews, K.B. & Bellocchi, G. & Buchan, K., 2006. "Evaluating uncertainty introduced to process-based simulation model estimates by alternative sources of meteorological data," Agricultural Systems, Elsevier, vol. 88(2-3), pages 451-471, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christopher K. Wikle & Abhirup Datta & Bhava Vyasa Hari & Edward L. Boone & Indranil Sahoo & Indulekha Kavila & Stefano Castruccio & Susan J. Simmons & Wesley S. Burr & Won Chang, 2023. "An illustration of model agnostic explainability methods applied to environmental data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
- Junguo, Hu & Guomo, Zhou & Xiaojun, Xu, 2013. "Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data," Ecological Modelling, Elsevier, vol. 266(C), pages 86-96.
- Antonanzas-Torres, F. & Sanz-Garcia, A. & Martínez-de-Pisón, F.J. & Perpiñán-Lamigueiro, O., 2013. "Evaluation and improvement of empirical models of global solar irradiation: Case study northern Spain," Renewable Energy, Elsevier, vol. 60(C), pages 604-614.
- Anamika, & Peesapati, Rajagopal & Kumar, Niranjan, 2016. "Estimation of GSR to ascertain solar electricity cost in context of deregulated electricity markets," Renewable Energy, Elsevier, vol. 87(P1), pages 353-363.
- Muzhou Hou & Tianle Zhang & Futian Weng & Mumtaz Ali & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2018. "Global Solar Radiation Prediction Using Hybrid Online Sequential Extreme Learning Machine Model," Energies, MDPI, vol. 11(12), pages 1-19, December.
- Shi, Lei & Zhang, Shuai & Arshad, Adeel & Hu, Yanwei & He, Yurong & Yan, Yuying, 2021. "Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Muhammad Umar Afzaal & Intisar Ali Sajjad & Ahmed Bilal Awan & Kashif Nisar Paracha & Muhammad Faisal Nadeem Khan & Abdul Rauf Bhatti & Muhammad Zubair & Waqas ur Rehman & Salman Amin & Shaikh Saaqib , 2020. "Probabilistic Generation Model of Solar Irradiance for Grid Connected Photovoltaic Systems Using Weibull Distribution," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
- Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
- Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.
- Rao K, D.V. Siva Krishna & Premalatha, M. & Naveen, C., 2018. "Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 248-258.
- Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
- Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2015. "Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1093-1106.
- Mohanty, Sthitapragyan & Patra, Prashanta Kumar & Sahoo, Sudhansu Sekhar, 2016. "Prediction and application of solar radiation with soft computing over traditional and conventional approach – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 778-796.
- Deo, Ravinesh C. & Şahin, Mehmet, 2017. "Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 828-848.
- Halabi, Laith M. & Mekhilef, Saad & Hossain, Monowar, 2018. "Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation," Applied Energy, Elsevier, vol. 213(C), pages 247-261.
- Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
- Yacef, R. & Benghanem, M. & Mellit, A., 2012. "Prediction of daily global solar irradiation data using Bayesian neural network: A comparative study," Renewable Energy, Elsevier, vol. 48(C), pages 146-154.
- Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.
- Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
- Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2014. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 509-519.
- Amedeo Buonanno & Martina Caliano & Marialaura Di Somma & Giorgio Graditi & Maria Valenti, 2022. "A Comprehensive Tool for Scenario Generation of Solar Irradiance Profiles," Energies, MDPI, vol. 15(23), pages 1-18, November.
- C. Iglesias & J. Martínez Torres & P. García Nieto & J. Alonso Fernández & C. Díaz Muñiz & J. Piñeiro & J. Taboada, 2014. "Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 319-331, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Garcia y Garcia, Axel & Guerra, Larry C. & Hoogenboom, Gerrit, 2008. "Impact of generated solar radiation on simulated crop growth and yield," Ecological Modelling, Elsevier, vol. 210(3), pages 312-326.
- Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Zarzo, Manuel & Martí, Pau, 2011. "Modeling the variability of solar radiation data among weather stations by means of principal components analysis," Applied Energy, Elsevier, vol. 88(8), pages 2775-2784, August.
- Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
- Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
- Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2014. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 509-519.
- Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2006. "An adaptive wavelet-network model for forecasting daily total solar-radiation," Applied Energy, Elsevier, vol. 83(7), pages 705-722, July.
- İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
- Mostafavi, Elham Sadat & Ramiyani, Sara Saeidi & Sarvar, Rahim & Moud, Hashem Izadi & Mousavi, Seyyed Mohammad, 2013. "A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran," Energy, Elsevier, vol. 49(C), pages 204-210.
- Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
- Rigby, Aidan & Baker, Una & Lindley, Benjamin & Wagner, Michael, 2024. "Generation and validation of comprehensive synthetic weather histories using auto-regressive moving-average models," Renewable Energy, Elsevier, vol. 224(C).
- Rivington, M. & Matthews, K.B. & Buchan, K. & Miller, D.G. & Bellocchi, G. & Russell, G., 2013. "Climate change impacts and adaptation scope for agriculture indicated by agro-meteorological metrics," Agricultural Systems, Elsevier, vol. 114(C), pages 15-31.
- Fatemi, Seyyed A. & Kuh, Anthony & Fripp, Matthias, 2016. "Online and batch methods for solar radiation forecast under asymmetric cost functions," Renewable Energy, Elsevier, vol. 91(C), pages 397-408.
- Almonacid, F. & Fernández, Eduardo F. & Rodrigo, P. & Pérez-Higueras, P.J. & Rus-Casas, C., 2013. "Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network," Energy, Elsevier, vol. 53(C), pages 165-172.
- Janjai, Serm & Plaon, Piyanuch, 2011. "Estimation of sky luminance in the tropics using artificial neural networks: Modeling and performance comparison with the CIE model," Applied Energy, Elsevier, vol. 88(3), pages 840-847, March.
- Zagouras, Athanassios & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "On the role of lagged exogenous variables and spatio–temporal correlations in improving the accuracy of solar forecasting methods," Renewable Energy, Elsevier, vol. 78(C), pages 203-218.
- Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Real-time prediction intervals for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 83(C), pages 234-244.
- Sharma, Vishal & Yang, Dazhi & Walsh, Wilfred & Reindl, Thomas, 2016. "Short term solar irradiance forecasting using a mixed wavelet neural network," Renewable Energy, Elsevier, vol. 90(C), pages 481-492.
- Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
- Kheradmanda, Saeid & Nematollahi, Omid & Ayoobia, Ahmad Reza, 2016. "Clearness index predicting using an integrated artificial neural network (ANN) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1357-1365.
More about this item
Keywords
Global solar radiation; Artificial neural network; Hargreaves and Samani; Iran;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:9:p:2131-2135. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.