IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7693-d1284682.html
   My bibliography  Save this article

A Global Solar Radiation Forecasting System Using Combined Supervised and Unsupervised Learning Models

Author

Listed:
  • Chih-Chiang Wei

    (Department of Marine Environmental Informatics & Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan)

  • Yen-Chen Yang

    (Department of Marine Environmental Informatics & Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan)

Abstract

One of the most important sources of energy is the sun. Taiwan is located at a 22–25° north latitude. Due to its proximity to the equator, it experiences only a small angle of sunlight incidence. Its unique geographical location can obtain sustainable and stable solar resources. This study uses research on solar radiation forecasts to maximize the benefits of solar power generation, and it develops methods that can predict future solar radiation patterns to help reduce the costs of solar power generation. This study built supervised machine learning models, known as a deep neural network (DNN) and a long–short-term memory neural network (LSTM). A hybrid supervised and unsupervised model, namely a cluster-based artificial neural network (k-means clustering- and fuzzy C-means clustering-based models) was developed. After establishing these models, the study evaluated their prediction results. For different prediction periods, the study selected the best-performing model based on the results and proposed combining them to establish a real-time-updated solar radiation forecast system capable of predicting the next 12 h. The study area covered Kaohsiung, Hualien, and Penghu in Taiwan. Data from ground stations of the Central Weather Administration, collected between 1993 and 2021, as well as the solar angle parameters of each station, were used as input data for the model. The results of this study show that different models offer advantages and disadvantages in predicting different future times. The hybrid prediction system can predict future solar radiation more accurately than a single model.

Suggested Citation

  • Chih-Chiang Wei & Yen-Chen Yang, 2023. "A Global Solar Radiation Forecasting System Using Combined Supervised and Unsupervised Learning Models," Energies, MDPI, vol. 16(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7693-:d:1284682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinyu Yang & Ying Ji & Xiaoxia Wang & Menghan Niu & Shuijing Long & Jingchao Xie & Yuying Sun, 2023. "Simplified Method for Predicting Hourly Global Solar Radiation Using Extraterrestrial Radiation and Limited Weather Forecast Parameters," Energies, MDPI, vol. 16(7), pages 1-16, April.
    2. Chih-Chiang Wei, 2017. "Predictions of Surface Solar Radiation on Tilted Solar Panels using Machine Learning Models: A Case Study of Tainan City, Taiwan," Energies, MDPI, vol. 10(10), pages 1-26, October.
    3. Anton Vernet & Alexandre Fabregat, 2023. "Evaluation of Empirical Daily Solar Radiation Models for the Northeast Coast of the Iberian Peninsula," Energies, MDPI, vol. 16(6), pages 1-18, March.
    4. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    2. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    3. Ronewa Collen Nemalili & Lordwell Jhamba & Joseph Kiprono Kirui & Caston Sigauke, 2023. "Nowcasting Hourly-Averaged Tilt Angles of Acceptance for Solar Collector Applications Using Machine Learning Models," Energies, MDPI, vol. 16(2), pages 1-19, January.
    4. Zina Boussaada & Octavian Curea & Ahmed Remaci & Haritza Camblong & Najiba Mrabet Bellaaj, 2018. "A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation," Energies, MDPI, vol. 11(3), pages 1-21, March.
    5. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.
    6. Juan Du & Qilong Min & Penglin Zhang & Jinhui Guo & Jun Yang & Bangsheng Yin, 2018. "Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model," Energies, MDPI, vol. 11(5), pages 1-16, May.
    7. Christil Pasion & Torrey Wagner & Clay Koschnick & Steven Schuldt & Jada Williams & Kevin Hallinan, 2020. "Machine Learning Modeling of Horizontal Photovoltaics Using Weather and Location Data," Energies, MDPI, vol. 13(10), pages 1-14, May.
    8. Carlos Cacciuttolo & Ximena Guardia & Eunice Villicaña, 2024. "Implementation of Renewable Energy from Solar Photovoltaic (PV) Facilities in Peru: A Promising Sustainable Future," Sustainability, MDPI, vol. 16(11), pages 1-40, May.
    9. Gi Yong Kim & Doo Sol Han & Zoonky Lee, 2020. "Solar Panel Tilt Angle Optimization Using Machine Learning Model: A Case Study of Daegu City, South Korea," Energies, MDPI, vol. 13(3), pages 1-13, January.
    10. Yasemin Ayaz Atalan & Abdulkadir Atalan, 2023. "Integration of the Machine Learning Algorithms and I-MR Statistical Process Control for Solar Energy," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    11. Zhenyu Wang & Cuixia Tian & Qibing Zhu & Min Huang, 2018. "Hourly Solar Radiation Forecasting Using a Volterra-Least Squares Support Vector Machine Model Combined with Signal Decomposition," Energies, MDPI, vol. 11(1), pages 1-21, January.
    12. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2024. "Artificial Intelligence-Based Improvement of Empirical Methods for Accurate Global Solar Radiation Forecast: Development and Comparative Analysis," Energies, MDPI, vol. 17(17), pages 1-42, August.
    13. Francisco Martínez-Álvarez & Alicia Troncoso & José C. Riquelme, 2018. "Data Science and Big Data in Energy Forecasting," Energies, MDPI, vol. 11(11), pages 1-2, November.
    14. Chih-Chiang Wei, 2019. "Evaluation of Photovoltaic Power Generation by Using Deep Learning in Solar Panels Installed in Buildings," Energies, MDPI, vol. 12(18), pages 1-18, September.
    15. Bikhtiyar Ameen & Heiko Balzter & Claire Jarvis & James Wheeler, 2019. "Modelling Hourly Global Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as New Inputs with Artificial Neural Networks," Energies, MDPI, vol. 12(1), pages 1-28, January.
    16. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "An interpretable framework for modeling global solar radiation using tree-based ensemble machine learning and Shapley additive explanations methods," Applied Energy, Elsevier, vol. 364(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7693-:d:1284682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.