IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v143y2021ics1364032121002549.html
   My bibliography  Save this article

Poplar wood torrefaction: Kinetics, thermochemistry and implications

Author

Listed:
  • Chai, Meiyun
  • Xie, Li
  • Yu, Xi
  • Zhang, Xingguang
  • Yang, Yang
  • Rahman, Md. Maksudur
  • Blanco, Paula H.
  • Liu, Ronghou
  • Bridgwater, Anthony V.
  • Cai, Junmeng

Abstract

The kinetic and thermochemical models for poplar wood torrefaction were developed in the present work. The torrefaction kinetic model satisfactorily fitted the experimental thermogravimetric analysis (TGA) data of poplar wood torrefaction and provided a coherent description of the evolution of torrefaction volatile and solid products in terms of a set of identifiable chemical components and elemental compositions. The torrefaction thermochemical model described the thermochemical performance of poplar wood torrefaction processes. The results from the kinetic and thermochemical models for poplar wood torrefaction showed that (1) high temperature increases the evolution rate of torrefaction products, and favors the formation of torrefaction volatiles; (2) the heating rate has a slight effect on evolution for torrefaction process; (3) the mass and energy yields of torrefaction products are significantly influenced by both torrefaction temperature and residence time; (4) the heat of torrefaction reaction is mostly endothermic with a relatively small amount (less than 10% of the raw material energy content); (5) for the overall torrefaction processes, the sensible and latent energy of torrefaction products accounts for 5–18% of the total energy input and the remaining energy input transfers into the energy contents of torrefaction products. This work provides a theoretical guidance for future evaluation and optimization of woody biomass torrefaction systems/processes, and thereafter for the industrial application of woody biomass thermochemical conversion.

Suggested Citation

  • Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002549
    DOI: 10.1016/j.rser.2021.110962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Xie, Youping & Liu, Zhenquan & Chang, Jo-Shu, 2018. "Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index," Applied Energy, Elsevier, vol. 220(C), pages 598-604.
    3. Nocquet, Timothée & Dupont, Capucine & Commandre, Jean-Michel & Grateau, Maguelone & Thiery, Sébastien & Salvador, Sylvain, 2014. "Volatile species release during torrefaction of biomass and its macromolecular constituents: Part 2 – Modeling study," Energy, Elsevier, vol. 72(C), pages 188-194.
    4. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    5. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    7. Wang, L. & Barta-Rajnai, E. & Skreiberg, Ø. & Khalil, R. & Czégény, Z. & Jakab, E. & Barta, Z. & Grønli, M., 2018. "Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark," Applied Energy, Elsevier, vol. 227(C), pages 137-148.
    8. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    9. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    10. Wang, Shurong & Dai, Gongxin & Ru, Bin & Zhao, Yuan & Wang, Xiaoliu & Xiao, Gang & Luo, Zhongyang, 2017. "Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose," Energy, Elsevier, vol. 120(C), pages 864-871.
    11. Cui, Tongmin & Fan, Wenke & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo & Wang, Fuchen, 2016. "Variation of the coal chemical structure and determination of the char molecular size at the early stage of rapid pyrolysis," Applied Energy, Elsevier, vol. 179(C), pages 650-659.
    12. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    13. Larsson, Sylvia H. & Rudolfsson, Magnus & Nordwaeger, Martin & Olofsson, Ingemar & Samuelsson, Robert, 2013. "Effects of moisture content, torrefaction temperature, and die temperature in pilot scale pelletizing of torrefied Norway spruce," Applied Energy, Elsevier, vol. 102(C), pages 827-832.
    14. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    15. Sermyagina, Ekaterina & Saari, Jussi & Zakeri, Behnam & Kaikko, Juha & Vakkilainen, Esa, 2015. "Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant," Applied Energy, Elsevier, vol. 149(C), pages 24-34.
    16. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    17. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
    18. Chen, Wei-Hsin & Cheng, Wen-Yi & Lu, Ke-Miao & Huang, Ying-Pin, 2011. "An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction," Applied Energy, Elsevier, vol. 88(11), pages 3636-3644.
    19. Peduzzi, Emanuela & Boissonnet, Guillaume & Haarlemmer, Geert & Dupont, Capucine & Maréchal, François, 2014. "Torrefaction modelling for lignocellulosic biomass conversion processes," Energy, Elsevier, vol. 70(C), pages 58-67.
    20. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    21. Duan, Hanqi & Zhang, Zhiqing & Rahman, Md Maksudur & Guo, Xiaojuan & Zhang, Xingguang & Cai, Junmeng, 2020. "Insight into torrefaction of woody biomass: Kinetic modeling using pattern search method," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    2. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    3. Zhang, Congyu & Chen, Wei-Hsin & Zhang, Ying & Ho, Shih-Hsin, 2023. "Influence of microorganisms on the variation of raw and oxidatively torrefied microalgal biomass properties," Energy, Elsevier, vol. 276(C).
    4. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    5. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Hanqi & Zhang, Zhiqing & Rahman, Md Maksudur & Guo, Xiaojuan & Zhang, Xingguang & Cai, Junmeng, 2020. "Insight into torrefaction of woody biomass: Kinetic modeling using pattern search method," Energy, Elsevier, vol. 201(C).
    2. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    4. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    6. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    7. da Silva, Jean Constantino Gomes & Pereira, Jefferson Leque Claudio & Andersen, Silvia Layara Floriani & Moreira, Regina de Fatima Peralta Muniz & José, Humberto Jorge, 2020. "Torrefaction of ponkan peel waste in tubular fixed-bed reactor: In-depth bioenergetic evaluation of torrefaction products," Energy, Elsevier, vol. 210(C).
    8. Chen, Wei-Hsin & Lin, Bo-Jhih & Colin, Baptiste & Chang, Jo-Shu & Pétrissans, Anélie & Bi, Xiaotao & Pétrissans, Mathieu, 2018. "Hygroscopic transformation of woody biomass torrefaction for carbon storage," Applied Energy, Elsevier, vol. 231(C), pages 768-776.
    9. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    10. Singh, Rishikesh Kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2020. "Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM)," Energy, Elsevier, vol. 198(C).
    11. Ke, Linyao & Wu, Qiuhao & Zhou, Nan & Xiong, Jianyun & Yang, Qi & Zhang, Letian & Wang, Yuanyuan & Dai, Leilei & Zou, Rongge & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2022. "Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Singh, Rishikesh Kumar & Chakraborty, Jyoti Prasad & Sarkar, Arnab, 2020. "Optimizing the torrefaction of pigeon pea stalk (cajanus cajan) using response surface methodology (RSM) and characterization of solid, liquid and gaseous products," Renewable Energy, Elsevier, vol. 155(C), pages 677-690.
    14. González Martínez, María & Dupont, Capucine & da Silva Perez, Denilson & Mortha, Gérard & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 1: Experimental thermogravimetric solid mass loss," Energy, Elsevier, vol. 205(C).
    15. Wang, Ziliang & Lim, C. Jim & Grace, John R., 2019. "A comprehensive study of sawdust torrefaction in a dual-compartment slot-rectangular spouted bed reactor," Energy, Elsevier, vol. 189(C).
    16. Catarina Viegas & Catarina Nobre & Ricardo Correia & Luísa Gouveia & Margarida Gonçalves, 2021. "Optimization of Biochar Production by Co-Torrefaction of Microalgae and Lignocellulosic Biomass Using Response Surface Methodology," Energies, MDPI, vol. 14(21), pages 1-23, November.
    17. Gan, Yong Yang & Chen, Wei-Hsin & Ong, Hwai Chyuan & Sheen, Herng-Kuang & Chang, Jo-Shu & Hsieh, Tzu-Hsien & Ling, Tau Chuan, 2020. "Effects of dry and wet torrefaction pretreatment on microalgae pyrolysis analyzed by TG-FTIR and double-shot Py-GC/MS," Energy, Elsevier, vol. 210(C).
    18. González Martínez, María & Dupont, Capucine & Anca-Couce, Andrés & da Silva Perez, Denilson & Boissonnet, Guillaume & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 2: Torrefaction model," Energy, Elsevier, vol. 210(C).
    19. Antonios Nazos & Panagiotis Grammelis & Elias Sakellis & Dimitrios Sidiras, 2020. "Acid-Catalyzed Wet Torrefaction for Enhancing the Heating Value of Barley Straw," Energies, MDPI, vol. 13(7), pages 1-16, April.
    20. Arteaga-Pérez, Luis E. & Segura, Cristina & Bustamante-García, Verónica & Gómez Cápiro, Oscar & Jiménez, Romel, 2015. "Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures," Energy, Elsevier, vol. 93(P2), pages 1731-1741.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.