IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v170y2021icp703-713.html
   My bibliography  Save this article

Enhancing the fuel properties of rubberwood biomass by moving bed torrefaction process for further applications

Author

Listed:
  • Kongto, Pumin
  • Palamanit, Arkom
  • Chaiprapat, Sumate
  • Tippayawong, Nakorn

Abstract

Rubberwood biomass is widely available in the southern region of Thailand and it has high potential for biofuel applications. Applications of this biomass still have some limitations, however, such as low energy properties and high biological decomposition. Therefore, the aim of this study was to enhance the fuel properties of rubberwood biomass by a torrefaction process. Rubberwood sawdust (RWS) was torrefied at different temperatures (200, 250, and 300 °C) and for various times (20, 40, and 60 min) in a moving bed reactor. The product yield and characteristics of torrefied RWS were investigated. Results showed that the solid yield of torrefied RWS was in the range of 39.07–88.69%, depending on temperature and time. The fuel atomic ratios of torrefied RWS were better than of raw RWS. The energy content and energy density of torrefied RWS were clearly enhanced (19.78–27.17 MJ/kg and 4.94–6.59 GJ/m3). ICP-OES results revealed a variation of inorganic elements in torrefied RWS, which was consistent with the ash components given by XRF. Ash fusion temperature of raw RWS and torrefied RWS ashes was stable at 1458 °C. The slagging index of torrefied RWS was decreased, while its fouling index was elevated.

Suggested Citation

  • Kongto, Pumin & Palamanit, Arkom & Chaiprapat, Sumate & Tippayawong, Nakorn, 2021. "Enhancing the fuel properties of rubberwood biomass by moving bed torrefaction process for further applications," Renewable Energy, Elsevier, vol. 170(C), pages 703-713.
  • Handle: RePEc:eee:renene:v:170:y:2021:i:c:p:703-713
    DOI: 10.1016/j.renene.2021.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121001798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    2. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Liaqat Ali & Arkom Palamanit & Kuaanan Techato & Asad Ullah & Md. Shahariar Chowdhury & Khamphe Phoungthong, 2022. "Characteristics of Biochars Derived from the Pyrolysis and Co-Pyrolysis of Rubberwood Sawdust and Sewage Sludge for Further Applications," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    4. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    5. Kongto, Pumin & Palamanit, Arkom & Chaiprapat, Sumate & Tippayawong, Nakorn & Khempila, Jarunee & Lam, Su Shiung & Hayat, Asif & Yuh Yek, Peter Nai, 2023. "Physicochemical changes and energy properties of torrefied rubberwood biomass produced by different scale moving bed reactors," Renewable Energy, Elsevier, vol. 219(P2).
    6. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    7. Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.
    8. Devaraja, Udya Madhavi Aravindi & Senadheera, Sachini Supunsala & Gunarathne, Duleeka Sandamali, 2022. "Torrefaction severity and performance of Rubberwood and Gliricidia," Renewable Energy, Elsevier, vol. 195(C), pages 1341-1353.
    9. Margareta Novian Cahyanti & Tharaka Rama Krishna C. Doddapaneni & Marten Madissoo & Linnar Pärn & Indrek Virro & Timo Kikas, 2021. "Torrefaction of Agricultural and Wood Waste: Comparative Analysis of Selected Fuel Characteristics," Energies, MDPI, vol. 14(10), pages 1-19, May.
    10. Jagadale, Manisha & Gangil, Sandip & Jadhav, Mahesh, 2023. "Enhancing fuel characteristics of jute sticks (Corchorus Sp.) using fixed bed torrefaction process," Renewable Energy, Elsevier, vol. 215(C).
    11. Zhao, Zhong & Feng, Shuo & Zhao, Yaying & Wang, Zhuozhi & Ma, Jiao & Xu, Lianfei & Yang, Jiancheng & Shen, Boxiong, 2022. "Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions," Renewable Energy, Elsevier, vol. 189(C), pages 1234-1248.
    12. Endriss, Felix & Kuptz, Daniel & Wissmann, Dirk & Hartmann, Hans & Dietz, Elke & Kappler, Andreas & Thorwarth, Harald, 2024. "Impacts on X-ray fluorescence measurements for rapid determination of the chemical composition of renewable solid biofuels," Renewable Energy, Elsevier, vol. 222(C).
    13. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:170:y:2021:i:c:p:703-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.