IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2153-d771868.html
   My bibliography  Save this article

Comparison of Characteristics of Poultry Litter Pellets Obtained by the Processes of Dry and Wet Torrefaction

Author

Listed:
  • Rafail Isemin

    (Biocenter, Tambov State Technical University, Sovetskaya St. 106, 392000 Tambov, Russia)

  • Alexander Mikhalev

    (Biocenter, Tambov State Technical University, Sovetskaya St. 106, 392000 Tambov, Russia)

  • Oleg Milovanov

    (Biocenter, Tambov State Technical University, Sovetskaya St. 106, 392000 Tambov, Russia)

  • Dmitry Klimov

    (Biocenter, Tambov State Technical University, Sovetskaya St. 106, 392000 Tambov, Russia)

  • Vadim Kokh-Tatarenko

    (Biocenter, Tambov State Technical University, Sovetskaya St. 106, 392000 Tambov, Russia)

  • Mathieu Brulé

    (Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens (AUA), Iera Odos 75, 11855 Athens, Greece)

  • Fouzi Tabet

    (Opti’Tech, Schletterstrasse 12, 04107 Leipzig, Germany)

  • Artemy Nebyvaev

    (Biocenter, Tambov State Technical University, Sovetskaya St. 106, 392000 Tambov, Russia)

  • Sergey Kuzmin

    (Biocenter, Tambov State Technical University, Sovetskaya St. 106, 392000 Tambov, Russia)

  • Valentin Konyakhin

    (Biocenter, Tambov State Technical University, Sovetskaya St. 106, 392000 Tambov, Russia)

Abstract

Torrefaction is a technology for the preliminary thermochemical treatment of biomass in order to improve its fuel characteristics. The aim of this work is to conduct comparative studies and select the optimal operating conditions of fluidized bed torrefaction for the processing of poultry litter (PL) into an environmentally friendly fuel. PL torrefaction was evaluated according to three different process configurations: (1) torrefaction of PL pellets in a fixed bed in a nitrogen medium at temperatures of 250 °C, 300 °C and 350 °C (NT1, NT2 and NT3); (2) torrefaction of PL pellets in a fluidized bed of quartz sand in a nitrogen medium at temperatures of 250 °C, 300 °C and 350 °C (NT4, NT5 and NT6); and (3) torrefaction of PL pellets in a fluidized bed of quartz sand in an environment of superheated steam at temperatures of 250 °C, 300 °C and 350 °C (ST1, ST2 and ST3). The duration of the torrefaction process in all experiments was determined by the time required for completion of CO 2 , CO, H 2 , and CH 4 release from the treated biomass samples. The gas analyzer (Vario Plus Syngaz) was used to measure the concentration of these gases. The torrefaction process began from the moment of loading the PL sample into the reactor, which was heated to the required temperature. After the start of the torrefaction process, the concentration of CO 2 , CO, H 2 , and CH 4 in the gases leaving the reactor initially increased and, subsequently, dropped sharply, indicating the completion of the torrefaction process. The chemical composition of the obtained biochar was studied, and it was found that the biochar contained approximately equal amounts of oxygen, carbon, nitrogen, hydrogen and ash, regardless of the torrefaction method. Furthermore, the biogas yield of the liquid condensate, obtained from the cooling of superheated steam used in the torrefaction process, was evaluated. The results highlight the efficiency of fluidized bed torrefaction, as well as the performance of superheated steam as a fluidization medium.

Suggested Citation

  • Rafail Isemin & Alexander Mikhalev & Oleg Milovanov & Dmitry Klimov & Vadim Kokh-Tatarenko & Mathieu Brulé & Fouzi Tabet & Artemy Nebyvaev & Sergey Kuzmin & Valentin Konyakhin, 2022. "Comparison of Characteristics of Poultry Litter Pellets Obtained by the Processes of Dry and Wet Torrefaction," Energies, MDPI, vol. 15(6), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2153-:d:771868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    3. Song, Bing & Lin, Richen & Lam, Chun Ho & Wu, Hao & Tsui, To-Hung & Yu, Yun, 2021. "Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Bach, Quang-Vu & Tran, Khanh-Quang & Skreiberg, Øyvind, 2017. "Comparative study on the thermal degradation of dry- and wet-torrefied woods," Applied Energy, Elsevier, vol. 185(P2), pages 1051-1058.
    5. Jaya Shankar Tumuluru & Richard D. Boardman & Christopher T. Wright & J. Richard Hess, 2012. "Some Chemical Compositional Changes in Miscanthus and White Oak Sawdust Samples during Torrefaction," Energies, MDPI, vol. 5(10), pages 1-20, October.
    6. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    2. Rafail Isemin & Alexander Mikhalev & Oleg Milovanov & Artemy Nebyvaev, 2022. "Some Results of Poultry Litter Processing into a Fertilizer by the Wet Torrefaction Method in a Fluidized Bed," Energies, MDPI, vol. 15(7), pages 1-11, March.
    3. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    4. Rafail Isemin & Fouzi Tabet & Artemy Nebyvaev & Vadim Kokh-Tatarenko & Sergey Kuzmin & Oleg Milovanov & Dmitry Klimov & Alexander Mikhalev & Semen Dobkin & Yuri Zhulaev, 2022. "Prediction of the Behavior of Sunflower Husk Ash after Its Processing by Various Torrefaction Methods," Energies, MDPI, vol. 15(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
    2. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    3. Nobre, Catarina & Vilarinho, Cândida & Alves, Octávio & Mendes, Benilde & Gonçalves, Margarida, 2019. "Upgrading of refuse derived fuel through torrefaction and carbonization: Evaluation of RDF char fuel properties," Energy, Elsevier, vol. 181(C), pages 66-76.
    4. Iglesias Canabal, Andrés & Proupín Castiñeiras, Jorge & Rodríguez Añón, José Antonio & Eimil Fraga, Cristina & Rodríguez Soalleiro, Roque, 2023. "Predicting the energy properties of torrefied debarked pine pellets from torrefaction temperature and residence time," Renewable Energy, Elsevier, vol. 218(C).
    5. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    7. Leonel J. R. Nunes, 2020. "Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms," Clean Technol., MDPI, vol. 2(3), pages 1-20, July.
    8. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    9. Jezerska, Lucie & Sassmanova, Veronika & Prokes, Rostislav & Gelnar, Daniel, 2023. "The pelletization and torrefaction of coffee grounds, garden chaff and rapeseed straw," Renewable Energy, Elsevier, vol. 210(C), pages 346-354.
    10. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    12. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Ahmad, Razi & Mohd Ishak, Mohd Azlan & Kasim, Nur Nasulhah & Ismail, Khudzir, 2019. "Properties and thermal analysis of upgraded palm kernel shell and Mukah Balingian coal," Energy, Elsevier, vol. 167(C), pages 538-547.
    14. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    15. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    16. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    17. Peng Liu & Panpan Lang & Ailing Lu & Yanling Li & Xueqin Li & Tanglei Sun & Yantao Yang & Hui Li & Tingzhou Lei, 2022. "Effect of Evolution of Carbon Structure during Torrefaction in Woody Biomass on Thermal Degradation," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    18. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    19. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    20. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2153-:d:771868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.