IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8082-d958774.html
   My bibliography  Save this article

An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications

Author

Listed:
  • Kutub Uddin

    (Faculty of Physics, Jagannath University, Dhaka 1100, Bangladesh
    International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan)

  • Bidyut Baran Saha

    (International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
    Mechanical Engineering Department, Kyushu University, Fukuoka 819-0395, Japan)

Abstract

Low global warming potential (GWP) refrigerants for the next-generation air conditioning systems have been investigated with target domestic applications. High-GWP refrigerants are mostly used in climate control applications such as heating, ventilation and air conditioning (HVAC) and refrigeration systems. The majority of refrigerants are responsible for significant environmental issues such as ozone layer depletion and global warming. The Montreal Protocol and the Kyoto Protocol have been implemented to address such issues. In the meantime, authorities in many countries have taken the initiative to phase out the usage of environmentally harmful refrigerants in vapor compression refrigeration systems. Following the global warming mitigation scheme by many signatory countries, research interest has been focused on finding alternative refrigerants with low or ultra-low GWP. This study considered the research trend and development of low-GWP refrigerants while examining system performance, safety issues, and the equivalent environmental impact as the critical assessment parameters. Here, the focus is primarily set on the potential of refrigerant blends (HFCs + HFOs) where the GWP value of 300 is set as the threshold value. Targeted for domestic heat pump systems, the performance of such systems using various refrigerant blends is collated and discussed. Many blends offer innovative drop-in replacements for R410A-conforming F-gas regulations. The technical difficulties and realistic remedies for the existing refrigerants are also discussed.

Suggested Citation

  • Kutub Uddin & Bidyut Baran Saha, 2022. "An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications," Energies, MDPI, vol. 15(21), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8082-:d:958774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bolaji, B.O., 2010. "Experimental study of R152a and R32 to replace R134a in a domestic refrigerator," Energy, Elsevier, vol. 35(9), pages 3793-3798.
    2. Dawo, Fabian & Fleischmann, Jonas & Kaufmann, Florian & Schifflechner, Christopher & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2021. "R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact," Applied Energy, Elsevier, vol. 288(C).
    3. Wang, R.Z. & Xia, Z.Z. & Wang, L.W. & Lu, Z.S. & Li, S.L. & Li, T.X. & Wu, J.Y. & He, S., 2011. "Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy," Energy, Elsevier, vol. 36(9), pages 5425-5439.
    4. Park, Ki-Jung & Seo, Taebeom & Jung, Dongsoo, 2007. "Performance of alternative refrigerants for residential air-conditioning applications," Applied Energy, Elsevier, vol. 84(10), pages 985-991, October.
    5. Zilio, Claudio & Brown, J. Steven & Schiochet, Giovanni & Cavallini, Alberto, 2011. "The refrigerant R1234yf in air conditioning systems," Energy, Elsevier, vol. 36(10), pages 6110-6120.
    6. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.
    7. Aprea, C. & Greco, A. & Maiorino, A., 2012. "An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2," Energy, Elsevier, vol. 45(1), pages 753-761.
    8. Park, Ki-Jung & Shim, Yun-Bo & Jung, Dongsoo, 2008. "Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps," Applied Energy, Elsevier, vol. 85(9), pages 896-900, September.
    9. Feng, Biao & Yang, Zhao & Zhai, Rui, 2018. "Experimental study on the influence of the flame retardants on the flammability of R1234yf," Energy, Elsevier, vol. 143(C), pages 212-218.
    10. Weber, Céline & Favrat, Daniel, 2010. "Conventional and advanced CO2 based district energy systems," Energy, Elsevier, vol. 35(12), pages 5070-5081.
    11. Ma, Yitai & Liu, Zhongyan & Tian, Hua, 2013. "A review of transcritical carbon dioxide heat pump and refrigeration cycles," Energy, Elsevier, vol. 55(C), pages 156-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damir Požgaj & Branimir Pavković & Boris Delač & Vladimir Glažar, 2023. "Retrofitting of the District Heating System Based on the Application of Heat Pumps Operating with Natural Refrigerants," Energies, MDPI, vol. 16(4), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    2. Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
    3. Xin, Liyong & Liu, Chao & Tan, Luxi & Xu, Xiaoxiao & Li, Qibin & Huo, Erguang & Sun, Kuan, 2021. "Thermal stability and pyrolysis products of HFO-1234yf as an environment-friendly working fluid for Organic Rankine Cycle," Energy, Elsevier, vol. 228(C).
    4. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    5. Guo, Hao & Gong, Maoqiong & Qin, Xiaoyu, 2019. "Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump," Applied Energy, Elsevier, vol. 237(C), pages 338-352.
    6. Kumma, Nagarjuna & Kruthiventi, S.S Harish, 2024. "Current status of refrigerants used in domestic applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Xin, Liyong & Yu, Wei & Liu, Chao & Liu, Lang & Wang, Shukun & Li, Xiaoxiao & Liu, Yu, 2023. "Thermal stability of a mixed working fluid (R513A) for organic Rankine cycle," Energy, Elsevier, vol. 263(PF).
    8. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    9. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.
    10. Comakli, K. & Simsek, F. & Comakli, O. & Sahin, B., 2009. "Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method," Applied Energy, Elsevier, vol. 86(11), pages 2451-2458, November.
    11. Zhou, Guobing & Zhang, Yufeng, 2010. "Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290," Applied Energy, Elsevier, vol. 87(5), pages 1522-1528, May.
    12. Aprea, C. & Greco, A. & Maiorino, A., 2012. "An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2," Energy, Elsevier, vol. 45(1), pages 753-761.
    13. Bartosz Gil & Jacek Kasperski, 2018. "Efficiency Evaluation of the Ejector Cooling Cycle using a New Generation of HFO/HCFO Refrigerant as a R134a Replacement," Energies, MDPI, vol. 11(8), pages 1-17, August.
    14. Zhang, Shengjun & Wang, Huaixin & Guo, Tao, 2010. "Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures," Applied Energy, Elsevier, vol. 87(5), pages 1554-1561, May.
    15. Li, Gang & Eisele, Magnus & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard, 2014. "Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants," Energy, Elsevier, vol. 68(C), pages 819-831.
    16. Zilio, Claudio & Brown, J. Steven & Schiochet, Giovanni & Cavallini, Alberto, 2011. "The refrigerant R1234yf in air conditioning systems," Energy, Elsevier, vol. 36(10), pages 6110-6120.
    17. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    18. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    19. Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
    20. Park, Ki-Jung & Shim, Yun-Bo & Jung, Dongsoo, 2008. "Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps," Applied Energy, Elsevier, vol. 85(9), pages 896-900, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8082-:d:958774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.