IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i9p3793-3798.html
   My bibliography  Save this article

Experimental study of R152a and R32 to replace R134a in a domestic refrigerator

Author

Listed:
  • Bolaji, B.O.

Abstract

This paper presents an experimental study of R152a and R32, environment-friendly refrigerants with zero ozone depletion potential (ODP) and low global warming potential (GWP), to replace R134a in domestic refrigerator. A refrigerator designed and developed to work with R134a was tested, and its performance using R152a and R32 was evaluated and compared with its performance when R134a was used. The results obtained showed that the design temperature and pull-down time set by International Standard Organisation (ISO) for small refrigerator were achieved earlier using refrigerant R152a and R134a than using R32. The average coefficient of performance (COP) obtained using R152a is 4.7% higher than that of R134a while average COP of R32 is 8.5% lower than that of R134a. The system consumed less energy when R152a was used. The performance of R152a in the domestic refrigerator was constantly better than those of R134a and R32 throughout all the operating conditions, which shows that R152a can be used as replacement for R134a in domestic refrigerator.

Suggested Citation

  • Bolaji, B.O., 2010. "Experimental study of R152a and R32 to replace R134a in a domestic refrigerator," Energy, Elsevier, vol. 35(9), pages 3793-3798.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3793-3798
    DOI: 10.1016/j.energy.2010.05.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210003014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.05.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, J.M & Kim, Y.C, 2002. "The effects of improper refrigerant charge on the performance of a heat pump with an electronic expansion valve and capillary tube," Energy, Elsevier, vol. 27(4), pages 391-404.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Kun & Stone, Richard & Davies, Gareth & Dadd, Mike & Bailey, Paul, 2014. "Modelling and measurement of a moving magnet linear compressor performance," Energy, Elsevier, vol. 66(C), pages 487-495.
    2. Zilio, Claudio & Brown, J. Steven & Schiochet, Giovanni & Cavallini, Alberto, 2011. "The refrigerant R1234yf in air conditioning systems," Energy, Elsevier, vol. 36(10), pages 6110-6120.
    3. Aprea, C. & Greco, A. & Maiorino, A., 2012. "An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2," Energy, Elsevier, vol. 45(1), pages 753-761.
    4. Li, Gang & Eisele, Magnus & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard, 2014. "Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants," Energy, Elsevier, vol. 68(C), pages 819-831.
    5. Jeon, Yongseok & Kim, Dongwoo & Jung, Jongho & Jang, Dong Soo & Kim, Yongchan, 2018. "Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a," Energy, Elsevier, vol. 161(C), pages 1085-1095.
    6. Yijian He & Yufu Zheng & Jianguang Zhao & Qifei Chen & Lunyuan Zhang, 2024. "Study of a Novel Hybrid Refrigeration System, with Natural Refrigerants and Ultra-Low Carbon Emissions, for Air Conditioning," Energies, MDPI, vol. 17(4), pages 1-19, February.
    7. Kutub Uddin & Bidyut Baran Saha, 2022. "An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications," Energies, MDPI, vol. 15(21), pages 1-24, October.
    8. Yang, Mina & Jung, Chung Woo & Kang, Yong Tae, 2015. "Development of high efficiency cycles for domestic refrigerator-freezer application," Energy, Elsevier, vol. 93(P2), pages 2258-2266.
    9. Wang, Xiao & Yu, Jianlin, 2015. "An experimental investigation on a novel ejector enhanced refrigeration cycle applied in the domestic refrigerator-freezer," Energy, Elsevier, vol. 93(P1), pages 202-209.
    10. Xinwen Chen & Zhaohua Li & Yi Zhao & Hanying Jiang & Kun Liang & Jingxin Chen, 2019. "Modelling of Refrigerant Distribution in an Oil-Free Refrigeration System using R134a," Energies, MDPI, vol. 12(24), pages 1-15, December.
    11. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2018. "Development and application of a life cycle greenhouse gas emission analysis model for mobile air conditioning systems," Applied Energy, Elsevier, vol. 221(C), pages 161-179.
    12. Meng, Xuelin & Zheng, Danxing & Wang, Jianzhao & Li, Xinru, 2013. "Energy saving mechanism analysis of the absorption–compression hybrid refrigeration cycle," Renewable Energy, Elsevier, vol. 57(C), pages 43-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chae, Jung-Hoon & Choi, Jong Min, 2015. "Evaluation of the impacts of high stage refrigerant charge on cascade heat pump performance," Renewable Energy, Elsevier, vol. 79(C), pages 66-71.
    2. Park, Young Sung & Jeong, Ji Hwan & Ahn, Byoung Ha, 2014. "Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition," Applied Energy, Elsevier, vol. 132(C), pages 99-107.
    3. Jun Kwon Hwang & Patrick Nzivugira Duhirwe & Geun Young Yun & Sukho Lee & Hyeongjoon Seo & Inhan Kim & Mat Santamouris, 2020. "A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    4. Qu, Minglu & Xia, Liang & Deng, Shiming & Jiang, Yiqiang, 2012. "An experimental investigation on reverse-cycle defrosting performance for an air source heat pump using an electronic expansion valve," Applied Energy, Elsevier, vol. 97(C), pages 327-333.
    5. Belman-Flores, J.M. & Barroso-Maldonado, J.M. & Rodríguez-Muñoz, A.P. & Camacho-Vázquez, G., 2015. "Enhancements in domestic refrigeration, approaching a sustainable refrigerator – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 955-968.
    6. Ze Zhang & Xiaojun Dong & Zheng Ren & Tianwei Lai & Yu Hou, 2017. "Influence of Refrigerant Charge Amount and EEV Opening on the Performance of a Transcritical CO 2 Heat Pump Water Heater," Energies, MDPI, vol. 10(10), pages 1-14, October.
    7. Kang Li & Jun Yu & Mingkang Liu & Dan Xu & Lin Su & Yidong Fang, 2020. "A Study of Optimal Refrigerant Charge Amount Determination for Air-Conditioning Heat Pump System in Electric Vehicles," Energies, MDPI, vol. 13(3), pages 1-18, February.

    More about this item

    Keywords

    Experimental; Domestic refrigerator; Replacement; R134a; R152a; R32;
    All these keywords.

    JEL classification:

    • R32 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Other Spatial Production and Pricing Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3793-3798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.