IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1787-d342634.html
   My bibliography  Save this article

The Influence of Internal Heat Exchanger on the Performance of Transcritical CO 2 Water Source Heat Pump Water Heater

Author

Listed:
  • Fan Feng

    (State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Ze Zhang

    (State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Xiufang Liu

    (State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Changhai Liu

    (School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Yu Hou

    (State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

The characteristics of the transcritical CO 2 heat pump water heater (HPWH) system are; a lower inlet hot water temperature (T i-hw ) (sometimes this is lower than the water source temperature), and an outlet gas cooler temperature (T o-gc ) which is affected by the T i-hw and often lower than the critical temperature. In order to study the effects of the internal heat exchanger (IHX) on the operational performance of the transcritical CO 2 HPWH when T o-gc is low, a transcritical CO 2 water source HPWH experiment platform is established to conduct experimental research and comparative analysis on the operational performance of the transcritical CO 2 water source HPWH, with or without IHX. It is found that, if only the coefficient of performance (COP) and heating at the optimal exhaust pressure of the transcritical CO 2 water source HPWH were considered, COP and the heating of the non-IHX system would be slightly higher than those of the IHX system at the lower hot water flow and water source temperature, and this increase was not obvious. At the higher hot water flow rate and water source temperature, COP and the heating of the non-IHX system were also higher than those of the IHX system, and the increase was obvious. The experiment results showed that, near the optimal exhaust pressure, the variation range of COP and heating of the IHX system is relatively small, and the system has a relatively high stability.

Suggested Citation

  • Fan Feng & Ze Zhang & Xiufang Liu & Changhai Liu & Yu Hou, 2020. "The Influence of Internal Heat Exchanger on the Performance of Transcritical CO 2 Water Source Heat Pump Water Heater," Energies, MDPI, vol. 13(7), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1787-:d:342634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Jun Lan & Ma, Yi Tai & Li, Min Xia & Guan, Hai Qing, 2005. "Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander," Energy, Elsevier, vol. 30(7), pages 1162-1175.
    2. Xiufang Liu & Changhai Liu & Ze Zhang & Liang Chen & Yu Hou, 2017. "Experimental Study on the Performance of Water Source Trans-Critical CO 2 Heat Pump Water Heater," Energies, MDPI, vol. 10(6), pages 1-14, June.
    3. Ma, Yitai & Liu, Zhongyan & Tian, Hua, 2013. "A review of transcritical carbon dioxide heat pump and refrigeration cycles," Energy, Elsevier, vol. 55(C), pages 156-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benlin Shi & Muqing Chen & Weikai Chi & Qichao Yang & Guangbin Liu & Yuanyang Zhao & Liansheng Li, 2022. "Effects of Internal Heat Exchanger on Two-Stage Compression Trans-Critical CO 2 Refrigeration Cycle Combined with Expander and Intercooling," Energies, MDPI, vol. 16(1), pages 1-16, December.
    2. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Haruhiko Yamasaki & Hiroyuki Wakimoto & Takeshi Kamimura & Kazuhiro Hattori & Petter Nekså & Hiroshi Yamaguchi, 2022. "Visualization and Measurement of Swirling Flow of Dry Ice Particles in Cyclone Separator-Sublimator," Energies, MDPI, vol. 15(11), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    2. Zeng, Min-Qiang & Zheng, Qiu-Yun & Zhang, Xue-Lai & Mo, Fan-Yang & Zhang, Xin-Rong, 2022. "Thermodynamic analysis of a novel multi-target temperature transcritical CO2 ejector-expansion refrigeration cycle with vapor-injection," Energy, Elsevier, vol. 259(C).
    3. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    4. Dai, Baomin & Liu, Shengchun & Zhu, Kai & Sun, Zhili & Ma, Yitai, 2017. "Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander," Energy, Elsevier, vol. 122(C), pages 787-800.
    5. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    6. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    7. Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
    8. Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
    9. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    10. Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
    11. Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.
    12. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    13. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    14. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    15. Abbas Aghagoli & Mikhail Sorin & Mohammed Khennich, 2022. "Exergy Efficiency and COP Improvement of a CO 2 Transcritical Heat Pump System by Replacing an Expansion Valve with a Tesla Turbine," Energies, MDPI, vol. 15(14), pages 1-16, July.
    16. Guo, Jiangfeng & Song, Jian & Han, Zengxiao & Pervunin, Konstantin S. & Markides, Christos N., 2022. "Investigation of the thermohydraulic characteristics of vertical supercritical CO2 flows at cooling conditions," Energy, Elsevier, vol. 256(C).
    17. Ma, Yitai & Liu, Zhongyan & Tian, Hua, 2013. "A review of transcritical carbon dioxide heat pump and refrigeration cycles," Energy, Elsevier, vol. 55(C), pages 156-172.
    18. Knez, Ž. & Markočič, E. & Leitgeb, M. & Primožič, M. & Knez Hrnčič, M. & Škerget, M., 2014. "Industrial applications of supercritical fluids: A review," Energy, Elsevier, vol. 77(C), pages 235-243.
    19. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    20. Xiang Gou & Shian Liu & Yang Fu & Qiyan Zhang & Saima Iram & Yingfan Liu, 2018. "Experimental Study on the Performance of a Household Dual-Source Heat Pump Water Heater," Energies, MDPI, vol. 11(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1787-:d:342634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.