IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v167y2019icp440-453.html
   My bibliography  Save this article

Adsorptive heat storage and amplification: New cycles and adsorbents

Author

Listed:
  • Gordeeva, L.G.
  • Aristov, Yu.I.

Abstract

The increasing demands for cooling/heating, depletion of fossil fuels, and greenhouse gases emissions promote the development of adsorption heat transformation and storage (AHTS). This emerging technology is especially promising for converting low-temperature heat, like environmental, solar, and waste heat. Among the known AHTS applications (cooling, heat pumping, amplification, and storage), the adsorption heat storage and amplification are less developed, thus gaining an increasing attention of the scientific community. The researchers are mainly focused on the developing new cycles for heat storage/amplification and advanced adsorbents specialized for these cycles. In this paper, we review the state-of-the-art in the fields of adsorption heat storage/amplification. The new, recently suggested, cycles (e.g. a “Heat from Cold” cycle for upgrading the ambient heat) will be described and analyzed from both thermodynamic and dynamic points of view. New adsorbents developed for adsorption heat storage/amplification will be presented. Special attention will be paid to the problem how to harmonize the adsorbent with the AHTS cycle under various climatic conditions. The lab-scale units constructed for verification of the cycle feasibility and adsorbent efficiency also are briefly described and analyzed. Finally, the problems and outlooks of adsorption heat storage/amplification will be discussed.

Suggested Citation

  • Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
  • Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:440-453
    DOI: 10.1016/j.energy.2018.10.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218321285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omar M. Yaghi & Michael O'Keeffe & Nathan W. Ockwig & Hee K. Chae & Mohamed Eddaoudi & Jaheon Kim, 2003. "Reticular synthesis and the design of new materials," Nature, Nature, vol. 423(6941), pages 705-714, June.
    2. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2016. "A review on low grade heat powered adsorption cooling systems for ice production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 109-120.
    3. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    4. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    5. Henninger, Stefan K. & Ernst, Sebastian-Johannes & Gordeeva, Larisa & Bendix, Phillip & Fröhlich, Dominik & Grekova, Alexandra D. & Bonaccorsi, Lucio & Aristov, Yuri & Jaenchen, Jochen, 2017. "New materials for adsorption heat transformation and storage," Renewable Energy, Elsevier, vol. 110(C), pages 59-68.
    6. Saha, Bidyut Baran & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Koyama, Shigeru & Henninger, Stefan K. & Herbst, Annika & Janiak, Christoph, 2015. "Ethanol adsorption onto metal organic framework: Theory and experiments," Energy, Elsevier, vol. 79(C), pages 363-370.
    7. Li, Gang & Qian, Suxin & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard, 2014. "Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application," Energy, Elsevier, vol. 65(C), pages 675-691.
    8. Zhao, Y.J. & Wang, R.Z. & Zhang, Y.N. & Yu, N., 2016. "Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat," Energy, Elsevier, vol. 115(P1), pages 129-139.
    9. Wang, R.Z. & Xia, Z.Z. & Wang, L.W. & Lu, Z.S. & Li, S.L. & Li, T.X. & Wu, J.Y. & He, S., 2011. "Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy," Energy, Elsevier, vol. 36(9), pages 5425-5439.
    10. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
    11. Kohler, Tobias & Hinze, Moritz & Müller, Karsten & Schwieger, Wilhelm, 2017. "Temperature independent description of water adsorption on zeotypes showing a type V adsorption isotherm," Energy, Elsevier, vol. 135(C), pages 227-236.
    12. Gordeeva, Larisa & Aristov, Yuri, 2014. "Dynamic study of methanol adsorption on activated carbon ACM-35.4 for enhancing the specific cooling power of adsorptive chillers," Applied Energy, Elsevier, vol. 117(C), pages 127-133.
    13. Narayanan, Shankar & Kim, Hyunho & Umans, Ari & Yang, Sungwoo & Li, Xiansen & Schiffres, Scott N. & Rao, Sameer R. & McKay, Ian S. & Rios Perez, Carlos A. & Hidrovo, Carlos H. & Wang, Evelyn N., 2017. "A thermophysical battery for storage-based climate control," Applied Energy, Elsevier, vol. 189(C), pages 31-43.
    14. Narayanan, Shankar & Li, Xiansen & Yang, Sungwoo & Kim, Hyunho & Umans, Ari & McKay, Ian S. & Wang, Evelyn N., 2015. "Thermal battery for portable climate control," Applied Energy, Elsevier, vol. 149(C), pages 104-116.
    15. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    16. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    17. L. G. Gordeeva & Yu. I. Aristov, 2012. "Composites ‘salt inside porous matrix’ for adsorption heat transformation: a current state-of-the-art and new trends," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 7(4), pages 288-302, April.
    18. Johannes, Kévyn & Kuznik, Frédéric & Hubert, Jean-Luc & Durier, Francois & Obrecht, Christian, 2015. "Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings," Applied Energy, Elsevier, vol. 159(C), pages 80-86.
    19. Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Xia, Z.Z., 2016. "Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures," Applied Energy, Elsevier, vol. 169(C), pages 846-856.
    20. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    21. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    22. Tokarev, Mikhail M. & Gordeeva, Larisa G. & Grekova, Alexandra D. & Aristov, Yuri I., 2018. "Adsorption cycle “heat from cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica," Applied Energy, Elsevier, vol. 211(C), pages 136-145.
    23. Yannan Zhang & Ruzhu Wang & Tingxian Li & Yanjie Zhao, 2016. "Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage," Energies, MDPI, vol. 9(10), pages 1-15, October.
    24. Aristov, Yuri I., 2017. "Adsorptive transformation and storage of renewable heat: Review of current trends in adsorption dynamics," Renewable Energy, Elsevier, vol. 110(C), pages 105-114.
    25. Gordeeva, Larisa G. & Solovyeva, Marina V. & Aristov, Yuri I., 2016. "NH2-MIL-125 as a promising material for adsorptive heat transformation and storage," Energy, Elsevier, vol. 100(C), pages 18-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grabowska, K. & Sztekler, K. & Krzywanski, J. & Sosnowski, M. & Stefanski, S. & Nowak, W., 2021. "Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. experimental research of coated bed samples," Energy, Elsevier, vol. 215(PA).
    2. Frazzica, A. & Brancato, V. & Caprì, A. & Cannilla, C. & Gordeeva, L.G. & Aristov, Y.I., 2020. "Development of “salt in porous matrix” composites based on LiCl for sorption thermal energy storage," Energy, Elsevier, vol. 208(C).
    3. Tokarev, M.M. & Zlobin, A.A. & Aristov, Yu.I., 2019. "A new version of the large pressure jump (T-LPJ) method for dynamic study of pressure-initiated adsorptive cycles for heat storage and transformation," Energy, Elsevier, vol. 179(C), pages 542-548.
    4. Ilya Girnik & Yuri Aristov, 2020. "An Aqueous CaCl 2 Solution in the Condenser/Evaporator Instead of Pure Water: Application for the New Adsorptive Cycle “Heat from Cold”," Energies, MDPI, vol. 13(11), pages 1-11, June.
    5. Larisa Gordeeva & Yuri Aristov, 2022. "Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application," Energies, MDPI, vol. 15(20), pages 1-25, October.
    6. Jiang, L. & Li, S. & Wang, R.Q. & Fan, Y.B. & Zhang, X.J. & Roskilly, A.P., 2021. "Performance analysis on a hybrid compression-assisted sorption thermal battery for seasonal heat storage in severe cold region," Renewable Energy, Elsevier, vol. 180(C), pages 398-409.
    7. Wu, S. & Li, T.X. & Yan, T. & Wang, R.Z., 2019. "Advanced thermochemical resorption heat transformer for high-efficiency energy storage and heat transformation," Energy, Elsevier, vol. 175(C), pages 1222-1233.
    8. Mikhaeil, Makram & Gaderer, Matthias & Dawoud, Belal, 2020. "On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study," Energy, Elsevier, vol. 207(C).
    9. Aristov, Yu. I., 2022. "Adsorption heat conversion and storage in closed systems: What have we learned over the past decade of this century?," Energy, Elsevier, vol. 239(PB).
    10. Brandani, Stefano & Mangano, Enzo, 2022. "Direct measurement of the mass transport coefficient of water in silica-gel using the zero length column technique," Energy, Elsevier, vol. 239(PA).
    11. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tokarev, Mikhail M. & Gordeeva, Larisa G. & Grekova, Alexandra D. & Aristov, Yuri I., 2018. "Adsorption cycle “heat from cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica," Applied Energy, Elsevier, vol. 211(C), pages 136-145.
    2. Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Xu, J.X. & Li, T.X. & Chao, J.W. & Yan, T.S. & Wang, R.Z., 2019. "High energy-density multi-form thermochemical energy storage based on multi-step sorption processes," Energy, Elsevier, vol. 185(C), pages 1131-1142.
    4. Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
    5. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    6. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    7. Zhu, F.Q. & Jiang, L. & Wang, L.W. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2CaCl2NH3 resorption system for heat and refrigeration cogeneration," Applied Energy, Elsevier, vol. 181(C), pages 29-37.
    8. Gordeeva, Larisa G. & Solovyeva, Marina V. & Aristov, Yuri I., 2016. "NH2-MIL-125 as a promising material for adsorptive heat transformation and storage," Energy, Elsevier, vol. 100(C), pages 18-24.
    9. Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
    10. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    12. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Elsayed, Ahmed & Elsayed, Eman & AL-Dadah, Raya & Mahmoud, Saad & Elshaer, Amr & Kaialy, Waseem, 2017. "Thermal energy storage using metal–organic framework materials," Applied Energy, Elsevier, vol. 186(P3), pages 509-519.
    14. Li, T.X. & Xu, J.X. & Yan, T. & Wang, R.Z., 2016. "Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage," Energy, Elsevier, vol. 107(C), pages 347-359.
    15. Yan, T. & Wang, R.Z. & Li, T.X., 2018. "Experimental investigation on thermochemical heat storage using manganese chloride/ammonia," Energy, Elsevier, vol. 143(C), pages 562-574.
    16. Korhammer, Kathrin & Neumann, Karsten & Opel, Oliver & Ruck, Wolfgang K.L., 2018. "Thermodynamic and kinetic study of CaCl2-CH3OH adducts for solid sorption refrigeration by TGA/DSC," Applied Energy, Elsevier, vol. 230(C), pages 1255-1278.
    17. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    19. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    20. Henninger, Stefan K. & Ernst, Sebastian-Johannes & Gordeeva, Larisa & Bendix, Phillip & Fröhlich, Dominik & Grekova, Alexandra D. & Bonaccorsi, Lucio & Aristov, Yuri & Jaenchen, Jochen, 2017. "New materials for adsorption heat transformation and storage," Renewable Energy, Elsevier, vol. 110(C), pages 59-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:167:y:2019:i:c:p:440-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.