IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4197-d833462.html
   My bibliography  Save this article

Heat Control Effect of Phase Change Microcapsules upon Cement Slurry Applied to Hydrate-Bearing Sediment

Author

Listed:
  • Guokun Yang

    (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Tianle Liu

    (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Hai Zhu

    (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Zihan Zhang

    (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Yingtao Feng

    (Institute of Oilfield Chemistry, CNOOC Oil Service Co., Ltd., Sanhe 065201, China)

  • Ekaterina Leusheva

    (Department of Oil and Gas, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Valentin Morenov

    (Department of Oil and Gas, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

Abstract

This study aims to develop a novel low-heat cement slurry using phase change microcapsule additives to reduce the decomposition of hydrate-bearing sediments during cementing. Microcapsules were prepared by coating mixed alkanes with polymethyl methacrylate, and lipophilic-modified graphite was incorporated to enhance the thermal conductivity of microcapsules. The effects of microcapsules upon the hydration heat, pore distribution, and compressive strength of the cement slurry/stone were studied through a variety of tests. The results showed that the phase-change temperature, thermal enthalpy, and encapsulation efficiency of the microcapsules were 8.99–16.74 °C, 153.58 Jg −1 , and 47.2%, respectively. The introduction of lipophilic-modified graphite reduced the initial phase-change temperature of microcapsules by 0.49 °C, indicating an improvement in their temperature sensitivity. The maximum hydration heat of cement slurry decreased by 41.3% with 7% dosage of microcapsules; the proposed microcapsules outperformed comparable low-heat additives. Moreover, the presence of microcapsules could reduce the number of large pores in (and thereby improve the compressive strength of) cement stone. The innovation of this study is that it comprehensively and intuitively confirms the feasibility of the application of low-heat cement slurry with MPCM as the key in hydrate sediments rather than just focusing on the reduction of hydration heat; furthermore, a self-made cementing device was developed to simulate the cementing process of hydrate deposition. The results show that the thermal regulation of microcapsules inhibited the temperature increase rate of the cement slurry, significantly reducing the damage caused to the hydrate. These findings should improve the safety and quality of cement in offshore oil and gas well applications.

Suggested Citation

  • Guokun Yang & Tianle Liu & Hai Zhu & Zihan Zhang & Yingtao Feng & Ekaterina Leusheva & Valentin Morenov, 2022. "Heat Control Effect of Phase Change Microcapsules upon Cement Slurry Applied to Hydrate-Bearing Sediment," Energies, MDPI, vol. 15(12), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4197-:d:833462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xianjie & Feng, Qian & Peng, Zhigang & Zheng, Yong & Liu, Huan, 2020. "Preparation and evaluation of micro-encapsulated thermal control materials for oil well cement slurry," Energy, Elsevier, vol. 208(C).
    2. Yang, Guokun & Liu, Tianle & Aleksandravih, Blinov Pavel & Wang, Yazhou & Feng, Yingtao & Wen, Dayang & Fang, Changliang, 2022. "Temperature regulation effect of low melting point phase change microcapsules for cement slurry in nature gas hydrate-bearing sediments," Energy, Elsevier, vol. 253(C).
    3. Xuemin Wu & Qianyong Liang & Yun Ma & Yaohong Shi & Zhen Xia & Lihua Liu & Matthias Haeckel, 2018. "Submarine Landslides and their Distribution in the Gas Hydrate Area on the North Slope of the South China Sea," Energies, MDPI, vol. 11(12), pages 1-18, December.
    4. Eitan Cohen & Assaf Klar & Koji Yamamoto, 2019. "Micromechanical Investigation of Stress Relaxation in Gas Hydrate-Bearing Sediments Due to Sand Production," Energies, MDPI, vol. 12(11), pages 1-16, June.
    5. Lixia Li & Tianle Liu & Guosheng Jiang & Changliang Fang & Jiaxin Sun & Shaojun Zheng & Haodong Liu & Ekaterina Leusheva & Valentin Morenov & Nikolai Nikolaev, 2021. "Field Application of Microbial Self-Healing Cement Slurry in Chunguang 17-14 Well," Energies, MDPI, vol. 14(6), pages 1-19, March.
    6. Dongyi Zhou & Jiawei Yuan & Yuhong Zhou & Yicai Liu, 2020. "Preparation and Properties of Capric–Myristic Acid/Expanded Graphite Composite Phase Change Materials for Latent Heat Thermal Energy Storage," Energies, MDPI, vol. 13(10), pages 1-12, May.
    7. Huo, Jin-hua & Peng, Zhi-gang & Xu, Kun & Feng, Qian & Xu, De-yang, 2019. "Novel micro-encapsulated phase change materials with low melting point slurry: Characterization and cementing application," Energy, Elsevier, vol. 186(C).
    8. Yue Hu & Rui Guo & Per Kvols Heiselberg & Hicham Johra, 2020. "Modeling PCM Phase Change Temperature and Hysteresis in Ventilation Cooling and Heating Applications," Energies, MDPI, vol. 13(23), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Seńczuk & Aneta Sapińska-Śliwa & Tomasz Kowalski, 2022. "Utilization of Basalt Dust as Waste Material in Cement Grouts for Geothermal Application," Energies, MDPI, vol. 15(19), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Guokun & Liu, Tianle & Aleksandravih, Blinov Pavel & Wang, Yazhou & Feng, Yingtao & Wen, Dayang & Fang, Changliang, 2022. "Temperature regulation effect of low melting point phase change microcapsules for cement slurry in nature gas hydrate-bearing sediments," Energy, Elsevier, vol. 253(C).
    2. Zhao, Xin & Geng, Qi & Zhang, Zhen & Qiu, Zhengsong & Fang, Qingchao & Wang, Zhiyuan & Yan, Chuanliang & Ma, Yongle & Li, Yang, 2023. "Phase change material microcapsules for smart temperature regulation of drilling fluids for gas hydrate reservoirs," Energy, Elsevier, vol. 263(PB).
    3. Jun Gan & Shuling Xiong & Gang Liang & Zhiye Gao & Xing Li & Wei Yang & Zhenxue Jiang & Yaohua Wang, 2022. "The Influence of Hydrothermal Activity on the Long-Distance Migration and Accumulation of Hydrocarbons: A Case Study from the Y8 Area in the Songnan-Baodao Sag of Qiongdongnan Basin," Energies, MDPI, vol. 15(9), pages 1-19, April.
    4. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
    5. Lu, Wei & Yu, Anqi & Dong, Hao & He, Zhenglong & Liang, Yuntao & Liu, Weitao & Sun, Yong & Song, Shuanglin, 2023. "High-performance palmityl palmitate phase change microcapsules for thermal energy storage and thermal regulation," Energy, Elsevier, vol. 274(C).
    6. Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
    7. Li, Xiao-Yan & Hu, Heng-Qi & Wang, Yi & Li, Xiao-Sen, 2022. "Experimental study of gas-liquid-sand production behaviors during gas hydrates dissociation with sand control screen," Energy, Elsevier, vol. 254(PB).
    8. Ruslan Gizatullin & Mikhail Dvoynikov & Natalya Romanova & Victor Nikitin, 2023. "Drilling in Gas Hydrates: Managing Gas Appearance Risks," Energies, MDPI, vol. 16(5), pages 1-13, March.
    9. Liu, Lu & Zhang, Xuelai & Lin, Xiangwei, 2022. "Experimental investigations on the thermal performance and phase change hysteresis of low-temperature paraffin/MWCNTs/SDBS nanocomposite via dynamic DSC method," Renewable Energy, Elsevier, vol. 187(C), pages 572-585.
    10. Emiliano Borri & Nan Hua & Adriano Sciacovelli & Dawei Wu & Yulong Ding & Yongliang Li & Vincenza Brancato & Yannan Zhang & Andrea Frazzica & Wenguang Li & Zhibin Yu & Yanio E. Milian & Svetlana Ushak, 2022. "Phase Change Slurries for Cooling and Storage: An Overview of Research Trends and Gaps," Energies, MDPI, vol. 15(19), pages 1-17, September.
    11. Siavash Honari & Ehsan Seyedi Hosseininia, 2021. "Particulate Modeling of Sand Production Using Coupled DEM-LBM," Energies, MDPI, vol. 14(4), pages 1-32, February.
    12. Ran, Fengming & Xu, Changlu & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2021. "Numerical flow characteristics of microencapsulated phase change slurry flowing in a helically coiled tube for thermal energy storage," Energy, Elsevier, vol. 223(C).
    13. Nicola Bianco & Andrea Fragnito & Marcello Iasiello & Gerardo Maria Mauro & Luigi Mongibello, 2023. "Subcooling Effect on PCM Solidification: A Thermostat-like Approach to Thermal Energy Storage," Energies, MDPI, vol. 16(12), pages 1-16, June.
    14. Lin Zhao & Ning Li & Junhu Yang & Haijuan Wang & Lihui Zheng & Chunyu Wang, 2022. "Alkali-Resistant and pH-Sensitive Water Absorbent Self-Healing Materials Suitable for Oil Well Cement," Energies, MDPI, vol. 15(20), pages 1-11, October.
    15. Khanna, Sakshum & Paneliya, Sagar & Prajapati, Parth & Mukhopadhyay, Indrajit & Jouhara, Hussam, 2022. "Ultra-stable silica/exfoliated graphite encapsulated n-hexacosane phase change nanocomposite: A promising material for thermal energy storage applications," Energy, Elsevier, vol. 250(C).
    16. Gargi Kailkhura & Raphael Kahat Mandel & Amir Shooshtari & Michael Ohadi, 2022. "A 1D Reduced-Order Model (ROM) for a Novel Latent Thermal Energy Storage System," Energies, MDPI, vol. 15(14), pages 1-30, July.
    17. Ali Shaito & Mohammad Hammoud & Fadel Kawtharani & Ali Kawtharani & Hilal Reda, 2021. "Power Enhancement of a PV Module Using Different Types of Phase Change Materials," Energies, MDPI, vol. 14(16), pages 1-12, August.
    18. Túlio Nascimento Porto & João M. P. Q. Delgado & Ana Sofia Guimarães & Hortência Luma Fernandes Magalhães & Gicelia Moreira & Balbina Brito Correia & Tony Freire de Andrade & Antonio Gilson Barbosa de, 2020. "Phase Change Material Melting Process in a Thermal Energy Storage System for Applications in Buildings," Energies, MDPI, vol. 13(12), pages 1-32, June.
    19. Mikhail Dvoynikov & Dmitry Sidorov & Evgeniy Kambulov & Frederick Rose & Rustem Ahiyarov, 2022. "Salt Deposits and Brine Blowout: Development of a Cross-Linking Composition for Blocking Formations and Methodology for Its Testing," Energies, MDPI, vol. 15(19), pages 1-20, October.
    20. Leizhen Wang & Guorong Wang, 2020. "Experimental and Theoretical Study on the Critical Breaking Velocity of Marine Natural Gas Hydrate Sediments Breaking by Water Jet," Energies, MDPI, vol. 13(7), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4197-:d:833462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.