IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2387-d1085432.html
   My bibliography  Save this article

Drilling in Gas Hydrates: Managing Gas Appearance Risks

Author

Listed:
  • Ruslan Gizatullin

    (Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Mikhail Dvoynikov

    (Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Natalya Romanova

    (Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Victor Nikitin

    (PJSC Gazprom, 197229 Saint Petersburg, Russia)

Abstract

This article provides a detailed analysis of issues related to the complications while drilling in hydrate-bearing rocks of permafrost areas. The goal of the paper is to develop recommendations for preventing gas occurrence while drilling gas hydrate deposits and to eliminate gas leakiness of the intercasing space of the well. The results of modeling the effect of drilling mud injection on the temperature field of the well are presented. It is revealed that the most significant role is played by the injection rate of drilling mud and its temperature. The recommended flow rate of the process fluid should be within 0.30–0.45 m 3 /s, and its temperature should not exceed 20 °C. Controlling the parameters of drilling mud and its flow rate allows for avoiding intensive gas occurrence while drilling in gas hydrates. The presence of gas hydrates may be the cause of gas leakiness of the intercasing space in the permafrost area. One of the ways to eliminate leakiness is colmatation (clogging). A method of preventing leaks in the intercasing space of the gas well is the use of colmatating solution. An aqueous solution of sodium silicate with the addition of 2% polymer is used as a colmatating composition.

Suggested Citation

  • Ruslan Gizatullin & Mikhail Dvoynikov & Natalya Romanova & Victor Nikitin, 2023. "Drilling in Gas Hydrates: Managing Gas Appearance Risks," Energies, MDPI, vol. 16(5), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2387-:d:1085432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oleg Bazaluk & Kateryna Sai & Vasyl Lozynskyi & Mykhailo Petlovanyi & Pavlo Saik, 2021. "Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea," Energies, MDPI, vol. 14(5), pages 1-24, March.
    2. Tianle Liu & Ekaterina Leusheva & Valentin Morenov & Lixia Li & Guosheng Jiang & Changliang Fang & Ling Zhang & Shaojun Zheng & Yinfei Yu, 2020. "Influence of Polymer Reagents in the Drilling Fluids on the Efficiency of Deviated and Horizontal Wells Drilling," Energies, MDPI, vol. 13(18), pages 1-16, September.
    3. Jacek Majorowicz & Kirk Osadetz & Jan Safanda, 2015. "Models of Talik, Permafrost and Gas Hydrate Histories—Beaufort Mackenzie Basin, Canada," Energies, MDPI, vol. 8(7), pages 1-27, June.
    4. Ai Oyama & Stephen M. Masutani, 2017. "A Review of the Methane Hydrate Program in Japan," Energies, MDPI, vol. 10(10), pages 1-13, September.
    5. Lixia Li & Tianle Liu & Guosheng Jiang & Changliang Fang & Jiaxin Sun & Shaojun Zheng & Haodong Liu & Ekaterina Leusheva & Valentin Morenov & Nikolai Nikolaev, 2021. "Field Application of Microbial Self-Healing Cement Slurry in Chunguang 17-14 Well," Energies, MDPI, vol. 14(6), pages 1-19, March.
    6. George Buslaev & Pavel Tsvetkov & Alexander Lavrik & Andrey Kunshin & Elizaveta Loseva & Dmitry Sidorov, 2021. "Ensuring the Sustainability of Arctic Industrial Facilities under Conditions of Global Climate Change," Resources, MDPI, vol. 10(12), pages 1-15, December.
    7. Mikhail Dvoynikov & Dmitry Sidorov & Evgeniy Kambulov & Frederick Rose & Rustem Ahiyarov, 2022. "Salt Deposits and Brine Blowout: Development of a Cross-Linking Composition for Blocking Formations and Methodology for Its Testing," Energies, MDPI, vol. 15(19), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel Tsiglianu & Natalia Romasheva & Artem Nenko, 2023. "Conceptual Management Framework for Oil and Gas Engineering Project Implementation," Resources, MDPI, vol. 12(6), pages 1-27, May.
    2. Natalia Koteleva & Nikolai Korolev, 2024. "A Diagnostic Curve for Online Fault Detection in AC Drives," Energies, MDPI, vol. 17(5), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Duryagin & Thang Nguyen Van & Nikita Onegov & Galiya Shamsutdinova, 2022. "Investigation of the Selectivity of the Water Shutoff Technology," Energies, MDPI, vol. 16(1), pages 1-16, December.
    2. Andrey A. Kunshin & George V. Buslaev & Matthias Reich & Dmitriy S. Ulyanov & Dmitriy I. Sidorkin, 2023. "Numerical Simulation of Nonlinear Processes in the “Thruster—Downhole Motor—Bit” System While Extended Reach Well Drilling," Energies, MDPI, vol. 16(9), pages 1-22, April.
    3. Inzir Raupov & Mikhail Rogachev & Julia Sytnik, 2023. "Design of a Polymer Composition for the Conformance Control in Heterogeneous Reservoirs," Energies, MDPI, vol. 16(1), pages 1-18, January.
    4. Elke Kossel & Nikolaus K. Bigalke & Christian Deusner & Matthias Haeckel, 2021. "Microscale Processes and Dynamics during CH 4 –CO 2 Guest-Molecule Exchange in Gas Hydrates," Energies, MDPI, vol. 14(6), pages 1-31, March.
    5. Fangtian Wang & Bin Zhao & Gang Li, 2018. "Prevention of Potential Hazards Associated with Marine Gas Hydrate Exploitation: A Review," Energies, MDPI, vol. 11(9), pages 1-19, September.
    6. Shuzhan Li & Jin Yang & Guojing Zhu & Jiakang Wang & Yi Huang & Kun Jiang, 2024. "Research on Lateral Load Bearing Characteristics of Deepwater Drilling Conductor Suction Pile," Energies, MDPI, vol. 17(5), pages 1-20, February.
    7. Xuefeng Li & Baojiang Sun & Baojin Ma & Hao Li & Huaqing Liu & Dejun Cai & Xiansi Wang & Xiangpeng Li, 2023. "Study on the Evolution Law of Wellbore Stability Interface during Drilling of Offshore Gas Hydrate Reservoirs," Energies, MDPI, vol. 16(22), pages 1-17, November.
    8. Yin, Zhenyuan & Moridis, George & Chong, Zheng Rong & Linga, Praveen, 2019. "Effectiveness of multi-stage cooling processes in improving the CH4-hydrate saturation uniformity in sandy laboratory samples," Applied Energy, Elsevier, vol. 250(C), pages 729-747.
    9. Zhenhua Han & Luqing Zhang & Jian Zhou & Zhejun Pan & Song Wang & Ruirui Li, 2023. "Effect of Mineral Grain and Hydrate Layered Distribution Characteristics on the Mechanical Properties of Hydrate-Bearing Sediments," Energies, MDPI, vol. 16(21), pages 1-19, October.
    10. Tianyi Tan & Hui Zhang, 2021. "Study on the Mechanical Extended-Reach Limit Prediction Model of Horizontal Drilling with Dual-Channel Drillpipes," Energies, MDPI, vol. 14(22), pages 1-16, November.
    11. Zhen Li & Erik Spangenberg & Judith M. Schicks & Thomas Kempka, 2022. "Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic," Energies, MDPI, vol. 15(14), pages 1-25, July.
    12. Lin Zhao & Ning Li & Junhu Yang & Haijuan Wang & Lihui Zheng & Chunyu Wang, 2022. "Alkali-Resistant and pH-Sensitive Water Absorbent Self-Healing Materials Suitable for Oil Well Cement," Energies, MDPI, vol. 15(20), pages 1-11, October.
    13. Oleg Bazaluk & Andrii Velychkovych & Liubomyr Ropyak & Mykhailo Pashechko & Tetiana Pryhorovska & Vasyl Lozynskyi, 2021. "Influence of Heavy Weight Drill Pipe Material and Drill Bit Manufacturing Errors on Stress State of Steel Blades," Energies, MDPI, vol. 14(14), pages 1-15, July.
    14. Riley, David & Schaafsma, Marije & Marin-Moreno, Héctor & Minshull, Tim A., 2020. "A social, environmental and economic evaluation protocol for potential gas hydrate exploitation projects," Applied Energy, Elsevier, vol. 263(C).
    15. Oleg Bazaluk & Orest Slabyi & Vasyl Vekeryk & Andrii Velychkovych & Liubomyr Ropyak & Vasyl Lozynskyi, 2021. "A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming," Energies, MDPI, vol. 14(12), pages 1-15, June.
    16. Oleg Bazaluk & Vasyl Lozynskyi & Volodymyr Falshtynskyi & Pavlo Saik & Roman Dychkovskyi & Edgar Cabana, 2021. "Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process," Energies, MDPI, vol. 14(14), pages 1-18, July.
    17. Guokun Yang & Tianle Liu & Hai Zhu & Zihan Zhang & Yingtao Feng & Ekaterina Leusheva & Valentin Morenov, 2022. "Heat Control Effect of Phase Change Microcapsules upon Cement Slurry Applied to Hydrate-Bearing Sediment," Energies, MDPI, vol. 15(12), pages 1-21, June.
    18. Dmitry Radoushinsky & Kirill Gogolinskiy & Yousef Dellal & Ivan Sytko & Abhishek Joshi, 2023. "Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia," Sustainability, MDPI, vol. 15(20), pages 1-31, October.
    19. Qingtao Bu & Qingguo Meng & Jie Dong & Chengfeng Li & Changling Liu & Jinhuan Zhao & Zihao Wang & Wengao Zhao & Jiale Kang & Gaowei Hu, 2022. "Integration of Pore-Scale Visualization and an Ultrasonic Test System of Methane Hydrate-Bearing Sediments," Energies, MDPI, vol. 15(14), pages 1-14, July.
    20. Xinyue Duan & Jiaqiang Zuo & Jiadong Li & Yu Tian & Chuanyong Zhu & Liang Gong, 2023. "Prediction of Gas Hydrate Formation in the Wellbore," Energies, MDPI, vol. 16(14), pages 1-10, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2387-:d:1085432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.