IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs0360544222013172.html
   My bibliography  Save this article

Experimental study of gas-liquid-sand production behaviors during gas hydrates dissociation with sand control screen

Author

Listed:
  • Li, Xiao-Yan
  • Hu, Heng-Qi
  • Wang, Yi
  • Li, Xiao-Sen

Abstract

Sand production is a great challenge for gas hydrates production, and the use of sand control screen can relieve that. However, the use of the sand control screen could also change the gas/water production behavior, thereby affecting the gas production efficiency. In this study, the experiments of methane hydrate dissociation by depressurization with different mesh sizes of sand control screen (100 mesh, 200 mesh, 300 mesh, and 400 mesh) were conducted in a novel hydrate simulator. The gas-liquid-sand production behaviors during hydrate dissociation with different mesh sizes of sand control screen were analyzed. The experimental results showed that the absence of the sand control screen resulted in an obvious subsidence of the hydrate-bearing sediments due to large amount of sand production. The use of the sand control screen could prevent the sand migration from the hydrate reservoir to the production well, thereby reducing the risk of pipeline blockage and the subsidence of the sediments. The increase of the mesh size of the sand control screen reduced the total amount and the medium particle size of the sand production. However, the existence of the sand control screen also improved the resistance of fluid flowing from the hydrate reservoir to the production well, thereby decreasing the gas production rate. Compared to the average gas production rate without sand control screen, the average gas production rate at depressurization stage (DS) with the sand control screen was reduced by 76–96%. The larger the mesh size of the sand control screen, the greater the flowing resistance. Therefore, it's necessary to combine the sand control effect and gas production rate to select an appropriate mesh size of sand control screen. In this study, the particle size of the quartz sand used to simulate the hydrate-bearing sediments was 200–400 mesh, and the most appropriate mesh size of sand control screen was around 300 mesh. The results of this study are of great significance for developing the sand controlling strategy and the efficient production of gas hydrates.

Suggested Citation

  • Li, Xiao-Yan & Hu, Heng-Qi & Wang, Yi & Li, Xiao-Sen, 2022. "Experimental study of gas-liquid-sand production behaviors during gas hydrates dissociation with sand control screen," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222013172
    DOI: 10.1016/j.energy.2022.124414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222013172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eitan Cohen & Assaf Klar & Koji Yamamoto, 2019. "Micromechanical Investigation of Stress Relaxation in Gas Hydrate-Bearing Sediments Due to Sand Production," Energies, MDPI, vol. 12(11), pages 1-16, June.
    2. Zhao, Jiafei & Fan, Zhen & Wang, Bin & Dong, Hongsheng & Liu, Yu & Song, Yongchen, 2016. "Simulation of microwave stimulation for the production of gas from methane hydrate sediment," Applied Energy, Elsevier, vol. 168(C), pages 25-37.
    3. Li, Yanlong & Wu, Nengyou & Ning, Fulong & Gao, Deli & Hao, Xiluo & Chen, Qiang & Liu, Changling & Sun, Jianye, 2020. "Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation," Energy, Elsevier, vol. 206(C).
    4. Xu, Chun-Gang & Cai, Jing & Lin, Fu-hua & Chen, Zhao-Yang & Li, Xiao-Sen, 2015. "Raman analysis on methane production from natural gas hydrate by carbon dioxide–methane replacement," Energy, Elsevier, vol. 79(C), pages 111-116.
    5. Jianliang Ye & Xuwen Qin & Haijun Qiu & Wenwei Xie & Hongfeng Lu & Cheng Lu & Jianhou Zhou & Jiyong Liu & Tianbang Yang & Jun Cao & Rina Sa, 2018. "Data Report: Molecular and Isotopic Compositions of the Extracted Gas from China’s First Offshore Natural Gas Hydrate Production Test in South China Sea," Energies, MDPI, vol. 11(10), pages 1-7, October.
    6. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    7. Jingsheng Lu & Dongliang Li & Yong He & Lingli Shi & Deqing Liang & Youming Xiong, 2019. "Experimental Study of Sand Production during Depressurization Exploitation in Hydrate Silty-Clay Sediments," Energies, MDPI, vol. 12(22), pages 1-14, November.
    8. Li, Yanlong & Wu, Nengyou & Gao, Deli & Chen, Qiang & Liu, Changling & Yang, Daoyong & Jin, Yurong & Ning, Fulong & Tan, Mingjian & Hu, Gaowei, 2021. "Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production," Energy, Elsevier, vol. 219(C).
    9. Jiafei Zhao & Chuanxiao Cheng & Yongchen Song & Weiguo Liu & Yu Liu & Kaihua Xue & Zihao Zhu & Zhi Yang & Dayong Wang & Mingjun Yang, 2012. "Heat Transfer Analysis of Methane Hydrate Sediment Dissociation in a Closed Reactor by a Thermal Method," Energies, MDPI, vol. 5(5), pages 1-17, May.
    10. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Chen, Zhao-Yang, 2015. "Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells," Energy, Elsevier, vol. 79(C), pages 315-324.
    11. Li, Yanghui & Liu, Weiguo & Zhu, Yiming & Chen, Yunfei & Song, Yongchen & Li, Qingping, 2016. "Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods," Applied Energy, Elsevier, vol. 162(C), pages 1627-1632.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zherui & Dai, Sining & Chen, Cong & Lyu, Huangwu & Zhang, Shuheng & Liu, Xuanji & Li, Yanghui, 2024. "Hydrate aggregation in oil-gas pipelines: Unraveling the dual role of asphalt and water," Energy, Elsevier, vol. 290(C).
    2. Qin, Shunbo & Sun, Jiaxin & Liu, Tianle & Tang, Chengxiang & Lei, Gang & Dou, Xiaofeng & Gu, Yuhang, 2024. "Sand control during gas production from marine hydrate reservoirs by using microbial-induced carbonate precipitation technology: A feasibility study," Energy, Elsevier, vol. 299(C).
    3. Tan, Lin & Liu, Fang & Dai, Sheng & Yao, Junlan, 2024. "A bibliometric analysis of two-decade research efforts in turning natural gas hydrates into energy," Energy, Elsevier, vol. 299(C).
    4. Zhang, Jun & Wang, Zili & Li, Liwen & Yan, Youguo & Xu, Jiafang & Zhong, Jie, 2023. "New insights into the kinetic effects of CH3OH on methane hydrate nucleation," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    2. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    3. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    4. Zhang, Zhengcai & Kusalik, Peter G. & Wu, Nengyou & Liu, Changling & Zhang, Yongchao, 2022. "Molecular simulation study on the stability of methane hydrate confined in slit-shaped pores," Energy, Elsevier, vol. 257(C).
    5. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    6. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2015. "Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods," Energy, Elsevier, vol. 90(P2), pages 1931-1948.
    7. Zhu, Huixing & Xu, Tianfu & Xin, Xin & Yuan, Yilong & Feng, Guanhong, 2022. "Numerical investigation of the three-phase layer production performance of an offshore natural gas hydrate trial production," Energy, Elsevier, vol. 257(C).
    8. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    9. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    10. Xingbo Li & Yu Liu & Hanquan Zhang & Bo Xiao & Xin Lv & Haiyuan Yao & Weixin Pang & Qingping Li & Lei Yang & Yongchen Song & Jiafei Zhao, 2019. "Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments," Energies, MDPI, vol. 12(10), pages 1-14, May.
    11. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    12. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    13. Jin, Guangrong & Liu, Jie & Su, Zheng & Feng, Chuangji & Cheng, Sanshan & Zhai, Haizhen & Liu, Lihua, 2024. "Gas production from a promising reservoir of the hydrate with associated and shallow gas layers in the low permeable sediments," Energy, Elsevier, vol. 295(C).
    14. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Chen, Zhao-Yang, 2015. "Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 145(C), pages 69-79.
    15. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    16. Yi Wang & Lei Zhan & Jing-Chun Feng & Xiao-Sen Li, 2019. "Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation," Energies, MDPI, vol. 12(22), pages 1-15, November.
    17. Li, Xiao-Yan & Wan, Kun & Wang, Yi & Li, Xiao-Sen, 2022. "The double-edged characteristics of the soaking time during hydrate dissociation by periodic depressurization combined with hot water injection," Applied Energy, Elsevier, vol. 325(C).
    18. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    19. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    20. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222013172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.