IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4834-d1175526.html
   My bibliography  Save this article

Subcooling Effect on PCM Solidification: A Thermostat-like Approach to Thermal Energy Storage

Author

Listed:
  • Nicola Bianco

    (Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, P. Le Tecchio 80, 80125 Napoli, Italy)

  • Andrea Fragnito

    (Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, P. Le Tecchio 80, 80125 Napoli, Italy)

  • Marcello Iasiello

    (Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, P. Le Tecchio 80, 80125 Napoli, Italy)

  • Gerardo Maria Mauro

    (Dipartimento di Ingegneria, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Luigi Mongibello

    (ENEA–Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Piazzale Enrico Fermi 1, 80055 Portici, Italy)

Abstract

Choosing the right phase change material (PCM) for a thermal energy storage (TES) application is a crucial step in guaranteeing the effectiveness of the system. Among a variety of PCMs available, the choice for a given application is established by several key factors, e.g., latent heat, stability, and melting point. However, phenomena such as subcooling—for which PCM cools in a liquid state below its solidification point—can lead to a reduction in the amount of energy stored or released, reducing the TES overall effectiveness, and also in some inaccuracies when modeling the problem. Thus, understanding the effects of subcooling on PCM performance is crucial for modeling and optimizing the design and the performance of TES systems. To this end, this work analyzes the PCM discharging phase in a cold thermal energy storage coupled to a chiller system. A first conduction-based predictive model is developed based on enthalpy–porosity formulation. Subcooling phenomena are encompassed through a control variable formulation, which takes its cue from the operation of a thermostat. Then, thermal properties of the PCM, i.e., the phase change range and specific heat capacity curve with temperature, are evaluated by using differential scanning calorimetry (DSC), in order to derive a second predictive model based on these new data, without including subcooling, for the sake of comparison with the first one. Experimental results from the storage tank confirm both model reliability and the fact that the PCM suffers from subcooling. Between the two numerical models developed, the first one that considers subcooling proves it is able to predict with satisfactory accuracy (RMSE < 1 °C) the temperature evolution on different tank levels.

Suggested Citation

  • Nicola Bianco & Andrea Fragnito & Marcello Iasiello & Gerardo Maria Mauro & Luigi Mongibello, 2023. "Subcooling Effect on PCM Solidification: A Thermostat-like Approach to Thermal Energy Storage," Energies, MDPI, vol. 16(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4834-:d:1175526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sabine Moench & Robert Dittrich, 2022. "Influence of Natural Convection and Volume Change on Numerical Simulation of Phase Change Materials for Latent Heat Storage," Energies, MDPI, vol. 15(8), pages 1-11, April.
    2. Yue Hu & Rui Guo & Per Kvols Heiselberg & Hicham Johra, 2020. "Modeling PCM Phase Change Temperature and Hysteresis in Ventilation Cooling and Heating Applications," Energies, MDPI, vol. 13(23), pages 1-21, December.
    3. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    4. Shamseddine, I. & Pennec, F. & Biwole, P. & Fardoun, F., 2022. "Supercooling of phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    2. Agnieszka Żelazna & Lech Lichołai & Joanna Krasoń & Przemysław Miąsik & Dominika Mikušová, 2023. "The Effects of Using a Trombe Wall Modified with a Phase Change Material, from the Perspective of a Building’s Life Cycle," Energies, MDPI, vol. 16(23), pages 1-19, November.
    3. Zuo, Peixian & Liu, Zhong & Zhang, Hua & Dai, Dasong & Fu, Ziyan & Corker, Jorge & Fan, Mizi, 2023. "Formulation and phase change mechanism of Capric acid/Octadecanol binary composite phase change materials," Energy, Elsevier, vol. 270(C).
    4. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    5. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Boldoo, Tsogtbilegt & Chinnasamy, Veerakumar & Cho, Honghyun, 2024. "Enhancing efficiency and sustainability: Utilizing high energy density paraffin-based various PCM emulsions for low-medium temperature applications," Energy, Elsevier, vol. 303(C).
    7. Xinchen Zhou & Xiang Xu & Jiping Huang, 2023. "Adaptive multi-temperature control for transport and storage containers enabled by phase-change materials," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Chenglong Jia & Wenbin Zhao & Yong Zhu & Wu Lu & Zhong Tang, 2022. "A Numerical Study on the Decomposition and Diffusion Characteristics of SF 6 in Gas-Insulated Switchgear with Consideration of the Temperature Rising Effect," Energies, MDPI, vol. 15(21), pages 1-16, October.
    9. Sarrafha, Hamid & Kasaeian, Alibakhsh & Jahangir, Mohammad Hossein & Taylor, Robert A., 2021. "Transient thermal response of multi-walled carbon nanotube phase change materials in building walls," Energy, Elsevier, vol. 224(C).
    10. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
    11. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
    12. Xu, Huaqian & Zuo, Hongyang & Zeng, Kuo & Lu, Yongwen & Chi, Bowen & Flamant, Gilles & Yang, Haiping & Chen, Hanping, 2024. "Investigation of the modified Gaussian-based non-phase field method for numerical simulation of latent heat storage," Energy, Elsevier, vol. 288(C).
    13. Liu, Z.H. & Tao, Y.B. & Huang, Q. & Ye, H. & He, Y., 2024. "Annual performance study and optimization of concentrated photovoltaic-phase change material system," Applied Energy, Elsevier, vol. 364(C).
    14. Liu, Lu & Zhang, Xuelai & Lin, Xiangwei, 2022. "Experimental investigations on the thermal performance and phase change hysteresis of low-temperature paraffin/MWCNTs/SDBS nanocomposite via dynamic DSC method," Renewable Energy, Elsevier, vol. 187(C), pages 572-585.
    15. Lu, Fenglian & Chen, Weiye & Hu, Shuzhi & Chen, Lei & Sharshir, Swellam W. & Dong, Chuanshuai & Zhang, Lizhi, 2024. "Achieving a smart thermal management for lithium-ion batteries by electrically-controlled crystallization of supercooled calcium chloride hexahydrate solution," Applied Energy, Elsevier, vol. 364(C).
    16. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    17. Zhang, Tao & Zhang, Kaifei & Liu, Fei & Zhao, Miao & Zhang, David Z., 2024. "Analysis of thermal storage behavior of composite phase change materials embedded with gradient-designed TPMS thermal conductivity enhancers: A numerical and experimental study," Applied Energy, Elsevier, vol. 358(C).
    18. Rocha, Thiago Torres Martins & Teggar, Mohamed & Trevizoli, Paulo Vinicius & de Oliveira, Raphael Nunes, 2023. "Potential of latent thermal energy storage for performance improvement in small-scale refrigeration units: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    19. Mao, Qianjun & Cao, Wenlong, 2023. "Effect of variable capsule size on energy storage performances in a high-temperature three-layered packed bed system," Energy, Elsevier, vol. 273(C).
    20. Talluri, Teressa & Angani, Amarnathvarma & Shin, kyooJae & Hwang, Myeong-Hwan & Cha, Hyun-Rok, 2024. "A novel design of lithium-polymer pouch battery pack with passive thermal management for electric vehicles," Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4834-:d:1175526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.