Phase Change Slurries for Cooling and Storage: An Overview of Research Trends and Gaps
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ma, Fei & Zhang, Peng, 2020. "A review of thermo-fluidic performance and application of shellless phase change slurry: Part 2 – Flow and heat transfer characteristics," Energy, Elsevier, vol. 192(C).
- Ran, Fengming & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2020. "Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Ma, Fei & Zhang, Peng, 2019. "A review of thermo-fluidic performance and application of shellless phase change slurry: Part 1 – Preparations, properties and applications," Energy, Elsevier, vol. 189(C).
- Bai, Fanfei & Chen, Mingbiao & Song, Wenji & Yu, Qinghua & Li, Yongliang & Feng, Ziping & Ding, Yulong, 2019. "Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate," Energy, Elsevier, vol. 167(C), pages 561-574.
- Dufour, Thomas & Hoang, Hong Minh & Oignet, Jérémy & Osswald, Véronique & Clain, Pascal & Fournaison, Laurence & Delahaye, Anthony, 2017. "Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage," Applied Energy, Elsevier, vol. 204(C), pages 641-652.
- Shi, X.J. & Zhang, P., 2013. "A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system," Applied Energy, Elsevier, vol. 112(C), pages 1393-1402.
- Sun, Qibei & Kim, Shol & Kang, Yong Tae, 2017. "Study on dissociation characteristics of CO2 hydrate with THF for cooling application," Applied Energy, Elsevier, vol. 190(C), pages 249-256.
- Ran, Fengming & Xu, Changlu & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2021. "Numerical flow characteristics of microencapsulated phase change slurry flowing in a helically coiled tube for thermal energy storage," Energy, Elsevier, vol. 223(C).
- Yu, Qinghua & Tchuenbou-Magaia, Fideline & Al-Duri, Bushra & Zhang, Zhibing & Ding, Yulong & Li, Yongliang, 2018. "Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage," Applied Energy, Elsevier, vol. 211(C), pages 1190-1202.
- Zhang, P. & Ma, Z.W. & Bai, Z.Y. & Ye, J., 2016. "Rheological and energy transport characteristics of a phase change material slurry," Energy, Elsevier, vol. 106(C), pages 63-72.
- Zhang, G.H. & Zhao, C.Y., 2013. "Thermal property investigation of aqueous suspensions of microencapsulated phase change material and carbon nanotubes as a novel heat transfer fluid," Renewable Energy, Elsevier, vol. 60(C), pages 433-438.
- Choi, Sung & Park, Jungjoon & Kang, Yong Tae, 2019. "Experimental investigation on CO2 hydrate formation/dissociation for cold thermal energy harvest and transportation applications," Applied Energy, Elsevier, vol. 242(C), pages 1358-1368.
- Luisa F. Cabeza & Marta Chàfer & Érika Mata, 2020. "Comparative Analysis of Web of Science and Scopus on the Energy Efficiency and Climate Impact of Buildings," Energies, MDPI, vol. 13(2), pages 1-24, January.
- Feng, Qian & Liu, Xian-jie & Peng, Zhi-gang & Zheng, Yong & Huo, Jin-hua & Liu, Huan, 2019. "Preparation of low hydration heat cement slurry with micro-encapsulated thermal control material," Energy, Elsevier, vol. 187(C).
- Huo, Jin-hua & Peng, Zhi-gang & Xu, Kun & Feng, Qian & Xu, De-yang, 2019. "Novel micro-encapsulated phase change materials with low melting point slurry: Characterization and cementing application," Energy, Elsevier, vol. 186(C).
- Kim, Shol & Lee, Seong Hyuk & Kang, Yong Tae, 2017. "Characteristics of CO2 hydrate formation/dissociation in H2O + THF aqueous solution and estimation of CO2 emission reduction by district cooling application," Energy, Elsevier, vol. 120(C), pages 362-373.
- Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Kumar, Sreekala & Tee, Jackson & Seo, Yutaek & Linga, Praveen, 2022. "An electrical resistivity-based method for measuring semi-clathrate hydrate formation kinetics: Application for cold storage and transport," Applied Energy, Elsevier, vol. 308(C).
- Yang, Liu & Liu, Shuli & Zheng, Hongfei, 2019. "A comprehensive review of hydrodynamic mechanisms and heat transfer characteristics for microencapsulated phase change slurry (MPCS) in circular tube," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Vorbeck, Laura & Gschwander, Stefan & Thiel, Peter & Lüdemann, Bruno & Schossig, Peter, 2013. "Pilot application of phase change slurry in a 5m3 storage," Applied Energy, Elsevier, vol. 109(C), pages 538-543.
- Matsuura, Riku & Watanabe, Kosuke & Yamauchi, Yuji & Sato, Haruka & Chen, Li-Jen & Ohmura, Ryo, 2021. "Thermodynamic analysis of hydrate-based refrigeration cycle," Energy, Elsevier, vol. 220(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Kairan & Chen, Zuozhou & Zhang, Peng, 2024. "State-of-the-art of cold energy storage, release and transport using CO2 double hydrate slurry," Applied Energy, Elsevier, vol. 358(C).
- Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Choi, Sung & Park, Jungjoon & Kang, Yong Tae, 2019. "Experimental investigation on CO2 hydrate formation/dissociation for cold thermal energy harvest and transportation applications," Applied Energy, Elsevier, vol. 242(C), pages 1358-1368.
- Yang, Kairan & Guo, Weimin & Zhang, Peng, 2024. "Cold energy transport and release characteristics of CO2+TBAB hydrate slurry flow with hydrate dissociation," Energy, Elsevier, vol. 294(C).
- Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Babu, Ponnivalavan & Kumar, Sreekala & Tee, Jackson & Linga, Praveen, 2023. "Semi-clathrate hydrate slurry as a cold energy storage and transport medium: Rheological study, energy analysis and enhancement by amino acid," Energy, Elsevier, vol. 264(C).
- Krzysztof Dutkowski & Marcin Kruzel, 2023. "The State of the Art on the Flow Characteristic of an Encapsulated Phase-Change Material Slurry," Energies, MDPI, vol. 16(19), pages 1-27, October.
- Ran, Fengming & Xu, Changlu & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2021. "Numerical flow characteristics of microencapsulated phase change slurry flowing in a helically coiled tube for thermal energy storage," Energy, Elsevier, vol. 223(C).
- Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
- Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
- Cao, Jiahao & He, Yangjing & Feng, Jinxin & Lin, Shao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge," Applied Energy, Elsevier, vol. 279(C).
- Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
- Ran, Fengming & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2020. "Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Ma, Fei & Zhang, Peng, 2020. "A review of thermo-fluidic performance and application of shellless phase change slurry: Part 2 – Flow and heat transfer characteristics," Energy, Elsevier, vol. 192(C).
- Jie Wang & Airong Li & Faping Liu & Zedong Luo, 2021. "Experimental study on in situ dissociation kinetics of CO2 hydrate in pure water and water/sediments systems," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 331-341, April.
- Liu, Shengchun & Hao, Ling & Rao, Zhiming & Zhang, Xingxing, 2017. "Experimental study on crystallization process and prediction for the latent heat of ice slurry generation based sodium chloride solution," Applied Energy, Elsevier, vol. 185(P2), pages 1948-1953.
- Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
- Marcin Kruzel & Tadeusz Bohdal & Krzysztof Dutkowski & Mykola Radchenko, 2022. "The Effect of Microencapsulated PCM Slurry Coolant on the Efficiency of a Shell and Tube Heat Exchanger," Energies, MDPI, vol. 15(14), pages 1-11, July.
- Zhang, Guanhua & Wang, Mengke & Yan, Xiaoyu & Cui, Guomin & Dou, Binlin & Lu, Wei & Yang, Qiguo, 2024. "Flow and heat transfer characteristics of microencapsulated phase change material slurry in bonded triangular tubes for thermal energy storage systems," Energy, Elsevier, vol. 286(C).
- Kawasaki, Toshiyuki & Obara, Shin'ya, 2020. "CO2 hydrate heat cycle using a carbon fiber supported catalyst for gas hydrate formation processes," Applied Energy, Elsevier, vol. 269(C).
- Krzysztof Dutkowski & Marcin Kruzel & Tadeusz Bohdal, 2021. "Experimental Studies of the Influence of Microencapsulated Phase Change Material on Thermal Parameters of a Flat Liquid Solar Collector," Energies, MDPI, vol. 14(16), pages 1-15, August.
More about this item
Keywords
phase change slurry; gas hydrate slurry; cooling; transport; thermal energy storage; bibliometric analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6873-:d:919791. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.