IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3254-d375490.html
   My bibliography  Save this article

Phase Change Material Melting Process in a Thermal Energy Storage System for Applications in Buildings

Author

Listed:
  • Túlio Nascimento Porto

    (Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

  • João M. P. Q. Delgado

    (CONSTRUCT-LFC, Department of Civil Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Ana Sofia Guimarães

    (CONSTRUCT-LFC, Department of Civil Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Hortência Luma Fernandes Magalhães

    (Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

  • Gicelia Moreira

    (Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

  • Balbina Brito Correia

    (Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

  • Tony Freire de Andrade

    (Department of Petroleum Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

  • Antonio Gilson Barbosa de Lima

    (Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

Abstract

The development of thermal energy storage systems is a possible solution in the search for reductions in the difference between the global energy supply and demand. In this context, the ability of some materials, the so-called phase change materials (PCMs), to absorb and release large amounts of energy under specific periods and operating conditions has been verified. The applications of these materials are limited due to their low thermal conductivity, and thus, it is necessary to associate them with high-conductivity materials, such as metals, to make the control of energy absorption and release times possible. Bearing this in mind, this paper presents a numerical analysis of the melting process of a PCM into a triplex tube heat exchanger (TTHX) with finned copper tubes, which allowed for the heat transfer between a heating fluid (water) and the phase change material to power a liquid-desiccant air conditioning system. Through the analysis of the temperature fields, liquid fractions, and velocities, as well as the phase transition, it was possible to describe the material charging process; then, the results were compared with experimental data, which are available in the specialized literature, and presented mean errors of less than 10%. The total required time to completely melt the PCM was about 105.5 min with the water being injected into the TTHX at a flow rate of 8.3 L/min and a temperature of 90 °C. It was observed that the latent energy that accumulated during the melting process was 1330 kJ, while the accumulated sensitive energy was 835 kJ. The average heat flux at the internal surface of the inner tube was about 3 times higher than the average heat flux at the outer surface of the TTHX intermediate tube due to the velocity gradients that developed in the internal part of the heat exchanger, and was about 10 times more intense than those observed in the external region of the equipment.

Suggested Citation

  • Túlio Nascimento Porto & João M. P. Q. Delgado & Ana Sofia Guimarães & Hortência Luma Fernandes Magalhães & Gicelia Moreira & Balbina Brito Correia & Tony Freire de Andrade & Antonio Gilson Barbosa de, 2020. "Phase Change Material Melting Process in a Thermal Energy Storage System for Applications in Buildings," Energies, MDPI, vol. 13(12), pages 1-32, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3254-:d:375490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nithyanandam, K. & Pitchumani, R., 2013. "Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power," Applied Energy, Elsevier, vol. 103(C), pages 400-415.
    2. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    3. Zhao, C.Y. & Zhang, G.H., 2011. "Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3813-3832.
    4. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    5. Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
    6. Anna Zastawna-Rumin & Tomasz Kisilewicz & Umberto Berardi, 2020. "Novel Simulation Algorithm for Modeling the Hysteresis of Phase Change Materials," Energies, MDPI, vol. 13(5), pages 1-15, March.
    7. Huo, Jin-hua & Peng, Zhi-gang & Xu, Kun & Feng, Qian & Xu, De-yang, 2019. "Novel micro-encapsulated phase change materials with low melting point slurry: Characterization and cementing application," Energy, Elsevier, vol. 186(C).
    8. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    9. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    10. Hamidreza Shabgard & Weiwei Zhu & Amir Faghri, 2019. "Integral Solution of Two-Region Solid–Liquid Phase Change in Annular Geometries and Application to Phase Change Materials–Air Heat Exchangers," Energies, MDPI, vol. 12(23), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhishek Anand & Karunesh Kant & Amritanshu Shukla & Chang-Ren Chen & Atul Sharma, 2021. "Thermal Stability and Reliability Test of Some Saturated Fatty Acids for Low and Medium Temperature Thermal Energy Storage," Energies, MDPI, vol. 14(15), pages 1-22, July.
    2. Tulio R. N. Porto & João A. Lima & Tony H. F. Andrade & João M. P. Q. Delgado & António G. B. Lima, 2023. "3D Numerical Analysis of a Phase Change Material Solidification Process Applied to a Latent Thermal Energy Storage System," Energies, MDPI, vol. 16(7), pages 1-28, March.
    3. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Gao, Wei & Liu, Feifan & Yu, Cheng & Chen, Yongping & Liu, Xiangdong, 2023. "Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    5. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    7. Zhang, Xiaoyu & Wang, Xiaodong & Wu, Dezhen, 2016. "Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectivene," Energy, Elsevier, vol. 111(C), pages 498-512.
    8. Tang, Yaojie & Su, Di & Huang, Xiang & Alva, Guruprasad & Liu, Lingkun & Fang, Guiyin, 2016. "Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity," Applied Energy, Elsevier, vol. 180(C), pages 116-129.
    9. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    10. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    11. Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
    12. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    14. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    15. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    16. Zhu, Xiao & Han, Liang & Lu, Yunfeng & Wei, Fei & Jia, Xilai, 2019. "Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes," Applied Energy, Elsevier, vol. 254(C).
    17. Xu, Haoxin & Romagnoli, Alessandro & Sze, Jia Yin & Py, Xavier, 2017. "Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery," Applied Energy, Elsevier, vol. 187(C), pages 281-290.
    18. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    19. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    20. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3254-:d:375490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.