IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5124-d862682.html
   My bibliography  Save this article

A 1D Reduced-Order Model (ROM) for a Novel Latent Thermal Energy Storage System

Author

Listed:
  • Gargi Kailkhura

    (Advanced Heat Exchangers and Process Intensification (AHXPI) Laboratory, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA)

  • Raphael Kahat Mandel

    (Advanced Heat Exchangers and Process Intensification (AHXPI) Laboratory, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA)

  • Amir Shooshtari

    (Advanced Heat Exchangers and Process Intensification (AHXPI) Laboratory, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA)

  • Michael Ohadi

    (Advanced Heat Exchangers and Process Intensification (AHXPI) Laboratory, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA)

Abstract

Phase change material (PCM)-based thermal energy storage (TES) systems are widely used for repeated intermittent heating and cooling applications. However, such systems typically face some challenges due to the low thermal conductivity and expensive encapsulation process of PCMs. The present study overcomes these challenges by proposing a lightweight, low-cost, and low thermal resistance TES system that realizes a fluid-to-PCM additively manufactured metal-polymer composite heat exchanger (HX), based on our previously developed cross-media approach. A robust and simplified, analytical-based, 1D reduced-order model (ROM) was developed to compute the TES system performance, saving computational time compared to modeling the entire TES system using PCM-related transient CFD modeling. The TES model was reduced to a segment-level model comprising a single PCM-wire cylindrical domain based on the tube-bank geometry formed by the metal fin-wires. A detailed study on the geometric behavior of the cylindrical domain and the effect of overlapped areas, where the overlapped areas represent a deviation from 1D assumption on the TES performance, was conducted. An optimum geometric range of wire-spacings and size was identified. The 1D ROM assumes 1D radial conduction inside the PCM and analytically computes latent energy stored in the single PCM-wire cylindrical domain using thermal resistance and energy conservation principles. The latent energy is then time-integrated for the entire TES, making the 1D ROM computationally efficient. The 1D ROM neglects sensible thermal capacity and is thus applicable for the low Stefan number applications in the present study. The performance parameters of the 1D ROM were then validated with a 2D axisymmetric model, typically used in the literature, using commercially available CFD tools. For validation, a parametric study of a wide range of non-dimensionalized parameters, depending on applications ranging from pulsed-power cooling to peak-load shifting for building cooling application, is included in this paper. The 1D ROM appears to correlate well with the 2D axisymmetric model to within 10%, except at some extreme ranges of a few of the non-dimensional parameters, which lead to the condition of axial conduction inside the PCM, deviating from the 1D ROM.

Suggested Citation

  • Gargi Kailkhura & Raphael Kahat Mandel & Amir Shooshtari & Michael Ohadi, 2022. "A 1D Reduced-Order Model (ROM) for a Novel Latent Thermal Energy Storage System," Energies, MDPI, vol. 15(14), pages 1-30, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5124-:d:862682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yue Hu & Rui Guo & Per Kvols Heiselberg & Hicham Johra, 2020. "Modeling PCM Phase Change Temperature and Hysteresis in Ventilation Cooling and Heating Applications," Energies, MDPI, vol. 13(23), pages 1-21, December.
    2. Milián, Yanio E. & Gutiérrez, Andrea & Grágeda, Mario & Ushak, Svetlana, 2017. "A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 983-999.
    3. Gargi Kailkhura & Raphael Kahat Mandel & Amir Shooshtari & Michael Ohadi, 2022. "Numerical and Experimental Study of a Novel Additively Manufactured Metal-Polymer Composite Heat-Exchanger for Liquid Cooling Electronics," Energies, MDPI, vol. 15(2), pages 1-22, January.
    4. Zauner, Christoph & Hengstberger, Florian & Etzel, Mark & Lager, Daniel & Hofmann, Rene & Walter, Heimo, 2016. "Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM," Applied Energy, Elsevier, vol. 179(C), pages 237-246.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
    2. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    3. Zhu, Xiao & Han, Liang & Lu, Yunfeng & Wei, Fei & Jia, Xilai, 2019. "Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes," Applied Energy, Elsevier, vol. 254(C).
    4. Zhang, Guanhua & Yu, Zhenjie & Cui, Guomin & Dou, Binlin & Lu, Wei & Yan, Xiaoyu, 2020. "Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity," Renewable Energy, Elsevier, vol. 151(C), pages 542-550.
    5. Zhao, C.Y. & Tao, Y.B. & Yu, Y.S., 2022. "Thermal conductivity enhancement of phase change material with charged nanoparticle: A molecular dynamics simulation," Energy, Elsevier, vol. 242(C).
    6. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Yawen Ren & Hironao Ogura, 2023. "Dynamic Simulations on Enhanced Heat Recovery Using Heat Exchange PCM Fluid for Solar Collector," Energies, MDPI, vol. 16(7), pages 1-18, March.
    8. Mohanapriya, S. & Gopi, D., 2021. "Electro-oxidation of alcohols - Recent advancements in synthesis and applications of palladium core-shell nanostructured model catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    10. Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
    11. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    12. Gaeini, M. & Rouws, A.L. & Salari, J.W.O. & Zondag, H.A. & Rindt, C.C.M., 2018. "Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage," Applied Energy, Elsevier, vol. 212(C), pages 1165-1177.
    13. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    14. Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
    15. Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.
    16. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
    17. Yu, Qinghua & Jiang, Zhu & Cong, Lin & Lu, Tiejun & Suleiman, Bilyaminu & Leng, Guanghui & Wu, Zhentao & Ding, Yulong & Li, Yongliang, 2019. "A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 237(C), pages 367-377.
    18. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    19. Park, Jinsoo & Choi, Sung Ho & Karng, Sarng Woo, 2021. "Cascaded latent thermal energy storage using a charging control method," Energy, Elsevier, vol. 215(PA).
    20. Rea, Jonathan E. & Oshman, Christopher J. & Singh, Abhishek & Alleman, Jeff & Parilla, Philip A. & Hardin, Corey L. & Olsen, Michele L. & Siegel, Nathan P. & Ginley, David S. & Toberer, Eric S., 2018. "Experimental demonstration of a dispatchable latent heat storage system with aluminum-silicon as a phase change material," Applied Energy, Elsevier, vol. 230(C), pages 1218-1229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5124-:d:862682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.