IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8427-d702109.html
   My bibliography  Save this article

Control Method of Four Wire Active Power Filter Based on Three-Phase Neutral Point Clamped T-Type Converter

Author

Listed:
  • Dawid Buła

    (Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Grzegorz Jarek

    (Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Jarosław Michalak

    (Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Marcin Zygmanowski

    (Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

An active power filter based on a three-level neutral point clamped T-type converter with LCL input filter is presented in the paper. The main goal of the paper is the analysis of a control system that ensures independent control of a current in each phase. The presented control method of the filter allows reactive power compensation and/or a higher harmonics reduction to be achieved in each phase independently, with the possibility of control tan (φ) coefficient. This allows the power flow between the phases to be minimalized and reduces the RMS values of filter currents without the need to balance grid currents. The analysis presents the possibility of an operation in different modes, which was verified by experimental results. The results have been obtained in a 20 A RMS laboratory system described in the paper. The results reveal relatively low power losses, which are a feature of the selected three-level T-type topology. Additionally, that topology, when compared to a two-level one, ensures the reduction in current ripples with the same parameters of passive components.

Suggested Citation

  • Dawid Buła & Grzegorz Jarek & Jarosław Michalak & Marcin Zygmanowski, 2021. "Control Method of Four Wire Active Power Filter Based on Three-Phase Neutral Point Clamped T-Type Converter," Energies, MDPI, vol. 14(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8427-:d:702109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8427/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarawut Janpong & Kongpol Areerak & Kongpan Areerak, 2021. "Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network," Energies, MDPI, vol. 14(14), pages 1-21, July.
    2. Rodrigo Guzman Iturra & Peter Thiemann, 2019. "Asymmetrical Three-Level Inverter SiC-Based Topology for High Performance Shunt Active Power Filter," Energies, MDPI, vol. 13(1), pages 1-25, December.
    3. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review," Energies, MDPI, vol. 10(12), pages 1-29, December.
    4. Dariusz Zieliński & Karol Fatyga, 2021. "Frequency Estimation for Grid-Tied Inverters Using Resonant Frequency Estimator," Energies, MDPI, vol. 14(20), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah M. Noman & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Khaled E. Addoweesh, 2022. "Hybrid MLI Topology Using Open-End Windings for Active Power Filter Applications," Energies, MDPI, vol. 15(17), pages 1-21, September.
    2. Kabir Momoh & Shamsul Aizam Zulkifli & Petr Korba & Felix Rafael Segundo Sevilla & Arif Nur Afandi & Alfredo Velazquez-Ibañez, 2023. "State-of-the-Art Grid Stability Improvement Techniques for Electric Vehicle Fast-Charging Stations for Future Outlooks," Energies, MDPI, vol. 16(9), pages 1-29, May.
    3. Dawid Buła & Marcin Zygmanowski, 2022. "Control Strategies Applied to Active Power Filters," Energies, MDPI, vol. 15(7), pages 1-3, March.
    4. Rozmysław Mieński & Irena Wasiak & Paweł Kelm, 2023. "Integration of PV Sources in Prosumer Installations Eliminating Their Negative Impact on the Supplying Grid and Optimizing the Microgrid Operation," Energies, MDPI, vol. 16(8), pages 1-17, April.
    5. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.
    2. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    3. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    4. K. Muthuvel & M. Vijayakumar, 2020. "Solar PV Sustained Quasi Z-Source Network-Based Unified Power Quality Conditioner for Enhancement of Power Quality," Energies, MDPI, vol. 13(10), pages 1-26, May.
    5. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.
    6. Rui Hou & Pengfei Wang & Jian Wu & Dianguo Xu, 2022. "Research on Oscillation Suppression Methods in Shunt Active Power Filter System," Energies, MDPI, vol. 15(9), pages 1-19, April.
    7. Jiahao Yang & Xiangguo Li & Juntao Fei, 2023. "Intelligent Global Fast Terminal Sliding Mode Control of Active Power Filter," Mathematics, MDPI, vol. 11(4), pages 1-23, February.
    8. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    9. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    10. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    11. Yu Wang & Yuewu Wang & Si-Zhe Chen & Guidong Zhang & Yun Zhang, 2018. "A Simplified Minimum DC-Link Voltage Control Strategy for Shunt Active Power Filters," Energies, MDPI, vol. 11(9), pages 1-14, September.
    12. Leonardo Rodrigues Limongi & Fabricio Bradaschia & Calebe Hermann de Oliveira Lima & Marcelo Cabral Cavalcanti, 2018. "Reactive Power and Current Harmonic Control Using a Dual Hybrid Power Filter for Unbalanced Non-Linear Loads," Energies, MDPI, vol. 11(6), pages 1-19, May.
    13. Okech Emmanuel Okwako & Zhang-Hui Lin & Mali Xin & Kamaraj Premkumar & Alukaka James Rodgers, 2022. "Neural Network Controlled Solar PV Battery Powered Unified Power Quality Conditioner for Grid Connected Operation," Energies, MDPI, vol. 15(18), pages 1-18, September.
    14. Minh Ly Duc & Petr Bilik & Radek Martinek, 2023. "Harmonics Signal Feature Extraction Techniques: A Review," Mathematics, MDPI, vol. 11(8), pages 1-36, April.
    15. Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim & Jiashen Teh & Ching-Ming Lai, 2018. "Photovoltaic Integrated Shunt Active Power Filter with Simpler ADALINE Algorithm for Current Harmonic Extraction," Energies, MDPI, vol. 11(5), pages 1-22, May.
    16. Miran Rodič & Miro Milanovič & Mitja Truntič, 2018. "Digital Control of an Interleaving Operated Buck-Boost Synchronous Converter Used in a Low-Cost Testing System for an Automotive Powertrain," Energies, MDPI, vol. 11(9), pages 1-24, August.
    17. Oktay Karakaya & Murat Erhan Balci & Mehmet Hakan Hocaoglu, 2023. "Minimization of Voltage Harmonic Distortion of Synchronous Generators under Non-Linear Loading via Modulated Field Current," Energies, MDPI, vol. 16(4), pages 1-17, February.
    18. Andrzej Szromba, 2021. "Is It Possible to Obtain Benefits by Reducing the Contribution of the Digital Signal Processing Techniques to the Control of the Active Power Filter?," Energies, MDPI, vol. 14(19), pages 1-25, September.
    19. Roberto Perillo Barbosa da Silva & Rodolfo Quadros & Hamid Reza Shaker & Luiz Carlos Pereira da Silva, 2019. "Analysis of the Electrical Quantities Measured by Revenue Meters Under Different Voltage Distortions and the Influences on the Electrical Energy Billing," Energies, MDPI, vol. 12(24), pages 1-18, December.
    20. Mihaela Popescu & Alexandru Bitoleanu & Constantin Vlad Suru & Mihaita Linca & Gheorghe Eugen Subtirelu, 2020. "Adaptive Control of DC Voltage in Three-Phase Three-Wire Shunt Active Power Filters Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8427-:d:702109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.