IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6434-d905675.html
   My bibliography  Save this article

Hybrid MLI Topology Using Open-End Windings for Active Power Filter Applications

Author

Listed:
  • Abdullah M. Noman

    (Faculty of Engineering, Electrical Engineering Department, King Saud University, Riyadh 12372, Saudi Arabia)

  • Abdulaziz Alkuhayli

    (Faculty of Engineering, Electrical Engineering Department, King Saud University, Riyadh 12372, Saudi Arabia)

  • Abdullrahman A. Al-Shamma’a

    (Faculty of Engineering, Electrical Engineering Department, King Saud University, Riyadh 12372, Saudi Arabia)

  • Khaled E. Addoweesh

    (Faculty of Engineering, Electrical Engineering Department, King Saud University, Riyadh 12372, Saudi Arabia)

Abstract

Different multilevel converter topologies have been presented for achieving more output voltage steps, hence improving system performance and lowering costs. In this paper, a hybrid multilevel inverter (MLI) topology is proposed for active-power-filter applications. The proposed MLI is a combination of two standard topologies: the cascaded H-bridge and the three-phase cascaded voltage source inverter. This configuration enhances the voltage levels of the proposed MLI while using fewer switches than typical MLI topologies. The proposed MLI was developed in the MATLAB/Simulink environment, and a closed-loop control technique was used to achieve a unity power factor connection of the PV modules to the grid, as well as to compensate for harmonics caused by nonlinear loads. To demonstrate that the configuration was working correctly and that the control was precise, the proposed MLI was constructed in a laboratory. A MicroLabBox real-time controller handled data acquisition and switch gating. The proposed topology was experimentally connected to the grid and the MLI was experimentally used as an active power filter to compensate for the harmonics generated due to nonlinear loads. This control technique was able to generating a sinusoidal grid current that was in phase with the grid voltage, and the grid current’s total harmonic distortion was within acceptable limits. To validate the practicability of the proposed MLI, both simulation and experimental results are presented.

Suggested Citation

  • Abdullah M. Noman & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Khaled E. Addoweesh, 2022. "Hybrid MLI Topology Using Open-End Windings for Active Power Filter Applications," Energies, MDPI, vol. 15(17), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6434-:d:905675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6434/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6434/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdullah M. Noman & Abdullrahman A. Al-Shamma’a & Khaled E. Addoweesh & Ayman A. Alabduljabbar & Abdulrahman I. Alolah, 2018. "Cascaded Multilevel Inverter Topology Based on Cascaded H-Bridge Multilevel Inverter," Energies, MDPI, vol. 11(4), pages 1-20, April.
    2. Eduardo Espinosa & Pedro Melín & Carlos Baier & José Espinoza & Hugo Garcés, 2021. "An Efficiency Analysis of 27 Level Single-Phase Asymmetric Inverter without Regeneration," Energies, MDPI, vol. 14(5), pages 1-14, March.
    3. Subhashree Choudhury & Mohit Bajaj & Taraprasanna Dash & Salah Kamel & Francisco Jurado, 2021. "Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-48, September.
    4. Dawid Buła & Grzegorz Jarek & Jarosław Michalak & Marcin Zygmanowski, 2021. "Control Method of Four Wire Active Power Filter Based on Three-Phase Neutral Point Clamped T-Type Converter," Energies, MDPI, vol. 14(24), pages 1-18, December.
    5. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    6. Hazem Hassan Ali & Nashwa Ahmad Kamal & Ghada Saeed Elbasuony, 2021. "Two-Level Grid-Side Converter-Based STATCOM and Shunt Active Power Filter of Variable-Speed DFIG Wind Turbine-Based WECS Using SVM for Terminal Voltage," International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), IGI Global, vol. 12(2), pages 169-202, March.
    7. Soumya Ranjan Das & Prakash Kumar Ray & Arun Kumar Sahoo & Somula Ramasubbareddy & Thanikanti Sudhakar Babu & Nallapaneni Manoj Kumar & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2021. "A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement," Energies, MDPI, vol. 14(15), pages 1-32, July.
    8. Luis Galván & Pablo J. Gómez & Eduardo Galván & Juan M. Carrasco, 2022. "Optimization-Based Capacitor Balancing Method with Customizable Switching Reduction for CHB Converters," Energies, MDPI, vol. 15(6), pages 1-19, March.
    9. Gerardo Escobar & Panfilo R. Martinez-Rodriguez & Samuel Iturriaga-Medina & Gerardo Vazquez-Guzman & Jose M. Sosa-Zuñiga & Diego Langarica-Cordoba, 2020. "Control Design and Experimental Validation of a HB-NPC as a Shunt Active Power Filter," Energies, MDPI, vol. 13(7), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.
    2. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    3. Mohamed Maher & Shady H. E. Abdel Aleem & Ahmed M. Ibrahim & Adel El-Shahat, 2022. "Novel Mathematical Design of Triple-Tuned Filters for Harmonics Distortion Mitigation," Energies, MDPI, vol. 16(1), pages 1-22, December.
    4. Krzysztof Lowczowski & Jaroslaw Gielniak & Zbigniew Nadolny & Magdalena Udzik, 2024. "Analysis of the Impact of Volt/VAR Control on Harmonics Content and Alternative Harmonic Mitigation Methods," Energies, MDPI, vol. 17(22), pages 1-26, November.
    5. Abdulkarim Athwer & Ahmed Darwish, 2023. "A Review on Modular Converter Topologies Based on WBG Semiconductor Devices in Wind Energy Conversion Systems," Energies, MDPI, vol. 16(14), pages 1-44, July.
    6. Flavio A. Garcia-Santiago & Julio C. Rosas-Caro & Jesus E. Valdez-Resendiz & Jonathan C. Mayo-Maldonado & Antonio Valderrabano-Gonzalez & Hector R. Robles-Campos, 2022. "Single-Phase Five-Level Multilevel Inverter Based on a Transistors Six-Pack Module," Energies, MDPI, vol. 15(24), pages 1-21, December.
    7. Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.
    8. Tüysüz, Metin & Okumuş, Halil Ibrahim & Aymaz, Şeyma & Çavdar, Bora, 2024. "Real-time application of a demand-side management strategy using optimization algorithms," Applied Energy, Elsevier, vol. 368(C).
    9. Rui Hou & Pengfei Wang & Jian Wu & Dianguo Xu, 2022. "Research on Oscillation Suppression Methods in Shunt Active Power Filter System," Energies, MDPI, vol. 15(9), pages 1-19, April.
    10. Muhyaddin Rawa & Prem P & Jagabar Sathik Mohamed Ali & Marif Daula Siddique & Saad Mekhilef & Addy Wahyudie & Mehdi Seyedmahmoudian & Alex Stojcevski, 2021. "A New Multilevel Inverter Topology with Reduced DC Sources," Energies, MDPI, vol. 14(15), pages 1-21, August.
    11. Abdallah El Ghaly & Mohamad Tarnini & Nazih Moubayed & Khaled Chahine, 2022. "A Filter-Less Time-Domain Method for Reference Signal Extraction in Shunt Active Power Filters," Energies, MDPI, vol. 15(15), pages 1-16, July.
    12. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    13. Nicholas D. de Andrade & Ruben B. Godoy & Edson A. Batista & Moacyr A. G. de Brito & Rafael L. R. Soares, 2022. "Embedded FPGA Controllers for Current Compensation Based on Modern Power Theories," Energies, MDPI, vol. 15(17), pages 1-17, August.
    14. P. Abirami & C. N. Ravi, 2022. "Enhancing grid stability by maintaining power quality in distribution network using FOPID and ANN controlled shunt active filter," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7551-7578, June.
    15. Subhashree Choudhury & Shiba Kumar Acharya & Rajendra Kumar Khadanga & Satyajit Mohanty & Jehangir Arshad & Ateeq Ur Rehman & Muhammad Shafiq & Jin-Ghoo Choi, 2021. "Harmonic Profile Enhancement of Grid Connected Fuel Cell through Cascaded H-Bridge Multi-Level Inverter and Improved Squirrel Search Optimization Technique," Energies, MDPI, vol. 14(23), pages 1-21, November.
    16. Shaik Nyamathulla & Dhanamjayulu Chittathuru, 2023. "A Review of Multilevel Inverter Topologies for Grid-Connected Sustainable Solar Photovoltaic Systems," Sustainability, MDPI, vol. 15(18), pages 1-44, September.
    17. Krzysztof Sozanski & Pawel Szczesniak, 2023. "Advanced Control Algorithm for Three-Phase Shunt Active Power Filter Using Sliding DFT," Energies, MDPI, vol. 16(3), pages 1-17, February.
    18. Krzysztof Kołek & Andrzej Firlit & Krzysztof Piątek & Krzysztof Chmielowiec, 2021. "Analysis of the Practical Implementation of Flicker Measurement Coprocessor for AMI Meters," Energies, MDPI, vol. 14(6), pages 1-17, March.
    19. Rozmysław Mieński & Irena Wasiak & Paweł Kelm, 2023. "Integration of PV Sources in Prosumer Installations Eliminating Their Negative Impact on the Supplying Grid and Optimizing the Microgrid Operation," Energies, MDPI, vol. 16(8), pages 1-17, April.
    20. Krzysztof Kołek & Andrzej Firlit, 2021. "A New Optimal Current Controller for a Three-Phase Shunt Active Power Filter Based on Karush–Kuhn–Tucker Conditions," Energies, MDPI, vol. 14(19), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6434-:d:905675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.