IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4351-d597249.html
   My bibliography  Save this article

Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network

Author

Listed:
  • Sarawut Janpong

    (Power Electronics, Energy, Machines and Control Research Group, School of Electrical Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

  • Kongpol Areerak

    (Power Electronics, Energy, Machines and Control Research Group, School of Electrical Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

  • Kongpan Areerak

    (Power Electronics, Energy, Machines and Control Research Group, School of Electrical Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

Abstract

This paper presents an efficient harmonic detection for real-time generation of the reference current fed to a shunt active power filter using the ADALINE neural network. This proposed method is a single layer with 101 nodes generating the coefficients referred to as weights of the reference current model. It effectively overcomes the drawback of the current technology, which is instantaneous power theory (PQ). The proposed method was implemented on the TMS320F28335 DSP board and tested against MATLAB with Simulink as a hardware-in-loop (HIL) structure. This method gives a good performance by producing a precise reference current in a short period with uncomplicated calculation. It also efficiently can eliminate individual harmonic current. The achieved percentage of total harmonic distortion (%THD) in the current is reduced following the IEEE standard, while the power factor can be maintained to unity.

Suggested Citation

  • Sarawut Janpong & Kongpol Areerak & Kongpan Areerak, 2021. "Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network," Energies, MDPI, vol. 14(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4351-:d:597249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suleiman Musa & Mohd Amran Mohd Radzi & Hashim Hizam & Noor Izzri Abdul Wahab & Yap Hoon & Muhammad Ammirrul Atiqi Mohd Zainuri, 2017. "Modified Synchronous Reference Frame Based Shunt Active Power Filter with Fuzzy Logic Control Pulse Width Modulation Inverter," Energies, MDPI, vol. 10(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawid Buła & Grzegorz Jarek & Jarosław Michalak & Marcin Zygmanowski, 2021. "Control Method of Four Wire Active Power Filter Based on Three-Phase Neutral Point Clamped T-Type Converter," Energies, MDPI, vol. 14(24), pages 1-18, December.
    2. Rui Hou & Pengfei Wang & Jian Wu & Dianguo Xu, 2022. "Research on Oscillation Suppression Methods in Shunt Active Power Filter System," Energies, MDPI, vol. 15(9), pages 1-19, April.
    3. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang Zeng & Lin Yang & Yuchang Ling & Haoping Chen & Zhonglong Huang & Tao Yu & Bo Yang, 2018. "Smoothly Transitive Fixed Frequency Hysteresis Current Control Based on Optimal Voltage Space Vector," Energies, MDPI, vol. 11(7), pages 1-20, July.
    2. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    3. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.
    4. Abdallah El Ghaly & Mohamad Tarnini & Nazih Moubayed & Khaled Chahine, 2022. "A Filter-Less Time-Domain Method for Reference Signal Extraction in Shunt Active Power Filters," Energies, MDPI, vol. 15(15), pages 1-16, July.
    5. Ramon Guzmán & Luís García de Vicuña & Miguel Castilla & Jaume Miret & Antonio Camacho, 2017. "Finite Control Set Model Predictive Control for a Three-Phase Shunt Active Power Filter with a Kalman Filter-Based Estimation," Energies, MDPI, vol. 10(10), pages 1-14, October.
    6. Radek Martinek & Jaroslav Rzidky & Rene Jaros & Petr Bilik & Martina Ladrova, 2019. "Least Mean Squares and Recursive Least Squares Algorithms for Total Harmonic Distortion Reduction Using Shunt Active Power Filter Control," Energies, MDPI, vol. 12(8), pages 1-26, April.
    7. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    8. Yu Wang & Yuewu Wang & Si-Zhe Chen & Guidong Zhang & Yun Zhang, 2018. "A Simplified Minimum DC-Link Voltage Control Strategy for Shunt Active Power Filters," Energies, MDPI, vol. 11(9), pages 1-14, September.
    9. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2018. "A Dual-Function Instantaneous Power Theory for Operation of Three-Level Neutral-Point-Clamped Inverter-Based Shunt Active Power Filter," Energies, MDPI, vol. 11(6), pages 1-17, June.
    10. Khaled Chahine & Mohamad Tarnini & Nazih Moubayed & Abdallah El Ghaly, 2023. "Power Quality Enhancement of Grid-Connected Renewable Systems Using a Matrix-Pencil-Based Active Power Filter," Sustainability, MDPI, vol. 15(1), pages 1-19, January.
    11. Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim & Jiashen Teh & Ching-Ming Lai, 2018. "Photovoltaic Integrated Shunt Active Power Filter with Simpler ADALINE Algorithm for Current Harmonic Extraction," Energies, MDPI, vol. 11(5), pages 1-22, May.
    12. Mohamed Redha Rezoug & Rachid Chenni & Djamel Taibi, 2018. "Fuzzy Logic-Based Perturb and Observe Algorithm with Variable Step of a Reference Voltage for Solar Permanent Magnet Synchronous Motor Drive System Fed by Direct-Connected Photovoltaic Array," Energies, MDPI, vol. 11(2), pages 1-15, February.
    13. Alimuddin Alimuddin & Ria Arafiyah & Irma Saraswati & Rocky Alfanz & Partogi Hasudungan & Taufik Taufik, 2021. "Development and Performance Study of Temperature and Humidity Regulator in Baby Incubator Using Fuzzy-PID Hybrid Controller," Energies, MDPI, vol. 14(20), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4351-:d:597249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.