IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3516-d191196.html
   My bibliography  Save this article

Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm

Author

Listed:
  • Abdelbasset Krama

    (Electrical Engineering Department, LEVRES Laboratory, El -Oued University, El-Oued 39000, Algeria
    Electrical & Computer Engineering Department, Texas A&M University at Qatar, P.O. Box 23874, Education City, 77874 Doha, Qatar)

  • Laid Zellouma

    (Electrical Engineering Department, LEVRES Laboratory, El -Oued University, El-Oued 39000, Algeria)

  • Boualaga Rabhi

    (Electrical Engineering Department, LMSE Laboratory, Biskra University, Biskra 07000, Algeria)

  • Shady S. Refaat

    (Electrical & Computer Engineering Department, Texas A&M University at Qatar, P.O. Box 23874, Education City, 77874 Doha, Qatar)

  • Mansour Bouzidi

    (Département de l’Electronique et des Communications, Faculté des Nouvelles Technologies d’Information et Communication, Université Kasdi Merbah, Ouargla 30000, Algeria)

Abstract

This paper proposes a high performance control scheme for a double function grid-tied double-stage PV system. It is based on model predictive power control with space vector modulation. This strategy uses a discrete model of the system based on the time domain to generate the average voltage vector at each sampling period, with the aim of canceling the errors between the estimated active and reactive power values and their references. Also, it imposes a sinusoidal waveform of the current at the grid side, which allows active power filtering without a harmonic currents identification phase. The latter attempts to reduce the size and cost of the system as well as providing better performance. In addition, it can be implemented in a low-cost control platform due to its simplicity. A double-stage PV system is selected due to its flexibility in control, unlike single-stage strategies. Sliding mode control-based particle swarm optimization (PSO) is used to track the maximum power of the PV system. It offers high accuracy and good robustness. Concerning DC bus voltage of the inverter, the anti-windup PI controller is tuned offline using the particle swarm optimization algorithm to deliver optimal performance in DC bus voltage regulation. The overall system has been designed and validated in an experimental prototype; the obtained results in different phases demonstrate the higher performance and the better efficiency of the proposed system in terms of power quality enhancement and PV power injection.

Suggested Citation

  • Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3516-:d:191196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suleiman Musa & Mohd Amran Mohd Radzi & Hashim Hizam & Noor Izzri Abdul Wahab & Yap Hoon & Muhammad Ammirrul Atiqi Mohd Zainuri, 2017. "Modified Synchronous Reference Frame Based Shunt Active Power Filter with Fuzzy Logic Control Pulse Width Modulation Inverter," Energies, MDPI, vol. 10(6), pages 1-17, May.
    2. Yang Du & Ke Yan & Zixiao Ren & Weidong Xiao, 2018. "Designing Localized MPPT for PV Systems Using Fuzzy-Weighted Extreme Learning Machine," Energies, MDPI, vol. 11(10), pages 1-10, October.
    3. Luigi Piegari & Renato Rizzo & Ivan Spina & Pietro Tricoli, 2015. "Optimized Adaptive Perturb and Observe Maximum Power Point Tracking Control for Photovoltaic Generation," Energies, MDPI, vol. 8(5), pages 1-19, April.
    4. Liu, Liqun & Meng, Xiaoli & Liu, Chunxia, 2016. "A review of maximum power point tracking methods of PV power system at uniform and partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1500-1507.
    5. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review," Energies, MDPI, vol. 10(12), pages 1-29, December.
    6. Neeraj Priyadarshi & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Farooque Azam, 2018. "Maximum Power Point Tracking for Brushless DC Motor-Driven Photovoltaic Pumping Systems Using a Hybrid ANFIS-FLOWER Pollination Optimization Algorithm," Energies, MDPI, vol. 11(5), pages 1-16, April.
    7. Bouzelata, Yahia & Kurt, Erol & Altın, Necmi & Chenni, Rachid, 2015. "Design and simulation of a solar supplied multifunctional active power filter and a comparative study on the current-detection algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1114-1126.
    8. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    9. Spertino, Filippo & Corona, Fabio, 2013. "Monitoring and checking of performance in photovoltaic plants: A tool for design, installation and maintenance of grid-connected systems," Renewable Energy, Elsevier, vol. 60(C), pages 722-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiecheng Zhu & Xitian Wang & Da Xie & Chenghong Gu, 2019. "Control Strategy for MGT Generation System Optimized by Improved WOA to Enhance Demand Response Capability," Energies, MDPI, vol. 12(16), pages 1-20, August.
    2. Abderahmane Abid & Abualkasim Bakeer & Laid Zellouma & Mansour Bouzidi & Abderezak Lashab & Boualaga Rabhi, 2023. "Low Computational Burden Predictive Direct Power Control of Quasi Z-Source Inverter for Grid-Tied PV Applications," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    3. Daniel Gutierrez-Reina & Federico Barrero & Jose Riveros & Ignacio Gonzalez-Prieto & Sergio L. Toral & Mario J. Duran, 2019. "Interest and Applicability of Meta-Heuristic Algorithms in the Electrical Parameter Identification of Multiphase Machines," Energies, MDPI, vol. 12(2), pages 1-15, January.
    4. Emiyamrew Minaye Molla & Cheng-Chien Kuo, 2020. "Voltage Quality Enhancement of Grid-Integrated PV System Using Battery-Based Dynamic Voltage Restorer," Energies, MDPI, vol. 13(21), pages 1-16, November.
    5. Mostefa Mohamed-Seghir & Abdelbasset Krama & Shady S. Refaat & Mohamed Trabelsi & Haitham Abu-Rub, 2020. "Artificial Intelligence-Based Weighting Factor Autotuning for Model Predictive Control of Grid-Tied Packed U-Cell Inverter," Energies, MDPI, vol. 13(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tehzeeb-ul Hassan & Rabeh Abbassi & Houssem Jerbi & Kashif Mehmood & Muhammad Faizan Tahir & Khalid Mehmood Cheema & Rajvikram Madurai Elavarasan & Farman Ali & Irfan Ahmad Khan, 2020. "A Novel Algorithm for MPPT of an Isolated PV System Using Push Pull Converter with Fuzzy Logic Controller," Energies, MDPI, vol. 13(15), pages 1-20, August.
    2. Andrés Tobón & Julián Peláez-Restrepo & Jhon Montano & Mariana Durango & Jorge Herrera & Asier Ibeas, 2020. "MPPT of a Photovoltaic Panels Array with Partial Shading Using the IPSM with Implementation Both in Simulation as in Hardware," Energies, MDPI, vol. 13(4), pages 1-17, February.
    3. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    4. Yu Wang & Yuewu Wang & Si-Zhe Chen & Guidong Zhang & Yun Zhang, 2018. "A Simplified Minimum DC-Link Voltage Control Strategy for Shunt Active Power Filters," Energies, MDPI, vol. 11(9), pages 1-14, September.
    5. Li, Qiyu & Zhao, Shengdun & Wang, Mengqi & Zou, Zhongyue & Wang, Bin & Chen, Qixu, 2017. "An improved perturbation and observation maximum power point tracking algorithm based on a PV module four-parameter model for higher efficiency," Applied Energy, Elsevier, vol. 195(C), pages 523-537.
    6. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    7. Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim & Jiashen Teh & Ching-Ming Lai, 2018. "Photovoltaic Integrated Shunt Active Power Filter with Simpler ADALINE Algorithm for Current Harmonic Extraction," Energies, MDPI, vol. 11(5), pages 1-22, May.
    8. Mohamed Redha Rezoug & Rachid Chenni & Djamel Taibi, 2018. "Fuzzy Logic-Based Perturb and Observe Algorithm with Variable Step of a Reference Voltage for Solar Permanent Magnet Synchronous Motor Drive System Fed by Direct-Connected Photovoltaic Array," Energies, MDPI, vol. 11(2), pages 1-15, February.
    9. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    10. K. Muthuvel & M. Vijayakumar, 2020. "Solar PV Sustained Quasi Z-Source Network-Based Unified Power Quality Conditioner for Enhancement of Power Quality," Energies, MDPI, vol. 13(10), pages 1-26, May.
    11. Obeidi, Nabil & Kermadi, Mostefa & Belmadani, Bachir & Allag, Abdelkrim & Achour, Lazhar & Mesbahi, Nadhir & Mekhilef, Saad, 2023. "A modified current sensorless approach for maximum power point tracking of partially shaded photovoltaic systems," Energy, Elsevier, vol. 263(PA).
    12. Xinmin Li & Guokai Jiang & Wei Chen & Tingna Shi & Guozheng Zhang & Qiang Geng, 2019. "Commutation Torque Ripple Suppression Strategy of Brushless DC Motor Considering Back Electromotive Force Variation," Energies, MDPI, vol. 12(10), pages 1-14, May.
    13. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    14. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    15. Long-Yi Chang & Yi-Nung Chung & Kuei-Hsiang Chao & Jia-Jing Kao, 2018. "Smart Global Maximum Power Point Tracking Controller of Photovoltaic Module Arrays," Energies, MDPI, vol. 11(3), pages 1-16, March.
    16. Maen Takruri & Maissa Farhat & Oscar Barambones & José Antonio Ramos-Hernanz & Mohammed Jawdat Turkieh & Mohammed Badawi & Hanin AlZoubi & Maswood Abdus Sakur, 2020. "Maximum Power Point Tracking of PV System Based on Machine Learning," Energies, MDPI, vol. 13(3), pages 1-14, February.
    17. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    18. Diego R. Espinoza Trejo & Ernesto Bárcenas & José E. Hernández Díez & Guillermo Bossio & Gerardo Espinosa Pérez, 2018. "Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems," Energies, MDPI, vol. 11(3), pages 1-15, March.
    19. Jiang Zeng & Lin Yang & Yuchang Ling & Haoping Chen & Zhonglong Huang & Tao Yu & Bo Yang, 2018. "Smoothly Transitive Fixed Frequency Hysteresis Current Control Based on Optimal Voltage Space Vector," Energies, MDPI, vol. 11(7), pages 1-20, July.
    20. Yu-Pei Huang & Cheng-En Ye & Xiang Chen, 2018. "A Modified Firefly Algorithm with Rapid Response Maximum Power Point Tracking for Photovoltaic Systems under Partial Shading Conditions," Energies, MDPI, vol. 11(9), pages 1-33, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3516-:d:191196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.