IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3956-d1142011.html
   My bibliography  Save this article

State-of-the-Art Grid Stability Improvement Techniques for Electric Vehicle Fast-Charging Stations for Future Outlooks

Author

Listed:
  • Kabir Momoh

    (Faculty of Electrical and Electronic Engineering FKEE, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Malaysia)

  • Shamsul Aizam Zulkifli

    (Faculty of Electrical and Electronic Engineering FKEE, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Malaysia)

  • Petr Korba

    (School of Engineering, Zurich University of Applied Sciences, Technikumstrasse 9, 8401 Winterthur, Switzerland)

  • Felix Rafael Segundo Sevilla

    (School of Engineering, Zurich University of Applied Sciences, Technikumstrasse 9, 8401 Winterthur, Switzerland)

  • Arif Nur Afandi

    (Faculty of Engineering, Universitas Negeri Malang, JL. Semarang 5 Malang, Malang 65145, Indonesia)

  • Alfredo Velazquez-Ibañez

    (School of Engineering, Zurich University of Applied Sciences, Technikumstrasse 9, 8401 Winterthur, Switzerland)

Abstract

The growing trend for electric vehicles (EVs) and fast-charging stations (FCSs) will cause the overloading of grids due to the high current injection from FCSs’ converters. The insensitive nature of the state of charge (SOC) of EV batteries during FCS operation often results in grid instability problems, such as voltage and frequency deviation at the point of common coupling (PCC). Therefore, many researchers have focused on two-stage converter control (TSCC) and single-stage converter (SSC) control for FCS stability enhancement, and suggested that SSC architectures are superior in performance, unlike the TSCC methods. However, only a few research works have focused on SSC techniques, despite the techniques’ ability to provide inertia and damping support through the virtual synchronous machine (VSM) strategy due to power decoupling and dynamic response problems. TSCC methods deploy current or voltage control for controlling EVs’ SOC battery charging through proportional-integral (PI), proportional-resonant (PR), deadbeat or proportional-integral-derivative (PID) controllers, but these are relegated by high current harmonics, frequency fluctuation and switching losses due to transient switching. This paper reviewed the linkage between the latest research contributions, issues associated with TSCC and SSC techniques, and the performance evaluation of the techniques, and subsequently identified the research gaps and proposed SSC control with SOC consideration for further research studies.

Suggested Citation

  • Kabir Momoh & Shamsul Aizam Zulkifli & Petr Korba & Felix Rafael Segundo Sevilla & Arif Nur Afandi & Alfredo Velazquez-Ibañez, 2023. "State-of-the-Art Grid Stability Improvement Techniques for Electric Vehicle Fast-Charging Stations for Future Outlooks," Energies, MDPI, vol. 16(9), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3956-:d:1142011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dawid Buła & Grzegorz Jarek & Jarosław Michalak & Marcin Zygmanowski, 2021. "Control Method of Four Wire Active Power Filter Based on Three-Phase Neutral Point Clamped T-Type Converter," Energies, MDPI, vol. 14(24), pages 1-18, December.
    2. Abdul Basit & Tanvir Ahmad & Asfand Yar Ali & Kaleem Ullah & Gussan Mufti & Anca Daniela Hansen, 2019. "Flexible Modern Power System: Real-Time Power Balancing through Load and Wind Power," Energies, MDPI, vol. 12(9), pages 1-15, May.
    3. Mohammad Shahjalal & Tamanna Shams & Moshammed Nishat Tasnim & Md Rishad Ahmed & Mominul Ahsan & Julfikar Haider, 2022. "A Critical Review on Charging Technologies of Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-26, November.
    4. Tehseen Mazhar & Rizwana Naz Asif & Muhammad Amir Malik & Muhammad Asgher Nadeem & Inayatul Haq & Muhammad Iqbal & Muhammad Kamran & Shahzad Ashraf, 2023. "Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    5. Wenju Sang & Wenyong Guo & Shaotao Dai & Chenyu Tian & Suhang Yu & Yuping Teng, 2022. "Virtual Synchronous Generator, a Comprehensive Overview," Energies, MDPI, vol. 15(17), pages 1-29, August.
    6. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    7. Fermín Barrero-González & María Isabel Milanés-Montero & Eva González-Romera & Enrique Romero-Cadaval & Carlos Roncero-Clemente, 2019. "Control Strategy for Electric Vehicle Charging Station Power Converters with Active Functions," Energies, MDPI, vol. 12(20), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajeshkumar Ramraj & Ehsan Pashajavid & Sanath Alahakoon & Shantha Jayasinghe, 2023. "Quality of Service and Associated Communication Infrastructure for Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-28, October.
    2. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    3. Daniele Linaro & Federico Bizzarri & Davide Giudice & Cosimo Pisani & Giorgio M. Giannuzzi & Samuele Grillo & Angelo M. Brambilla, 2023. "Continuous estimation of power system inertia using convolutional neural networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Ibrahim Tumay Gulbahar & Muhammed Sutcu & Abedalmuhdi Almomany & Babul Salam KSM Kader Ibrahim, 2023. "Optimizing Electric Vehicle Charging Station Location on Highways: A Decision Model for Meeting Intercity Travel Demand," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    5. Jerzy Ryszard Szymanski & Marta Zurek-Mortka & Daniel Wojciechowski & Nikolai Poliakov, 2020. "Unidirectional DC/DC Converter with Voltage Inverter for Fast Charging of Electric Vehicle Batteries," Energies, MDPI, vol. 13(18), pages 1-17, September.
    6. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    7. Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Huilian Liao & Elizabeth Michalenko & Sarat Chandra Vegunta, 2023. "Review of Big Data Analytics for Smart Electrical Energy Systems," Energies, MDPI, vol. 16(8), pages 1-19, April.
    10. Rongliang Shi & Caihua Lan & Ji Huang & Chengwei Ju, 2023. "Analysis and Optimization Strategy of Active Power Dynamic Response for VSG under a Weak Grid," Energies, MDPI, vol. 16(12), pages 1-18, June.
    11. Rajanand Patnaik Narasipuram & Subbarao Mopidevi, 2023. "A Novel Hybrid Control Strategy and Dynamic Performance Enhancement of a 3.3 kW GaN–HEMT-Based iL 2 C Resonant Full-Bridge DC–DC Power Converter Methodology for Electric Vehicle Charging Systems," Energies, MDPI, vol. 16(15), pages 1-22, August.
    12. Hasan Huseyin Coban & Aysha Rehman & Abdullah Mohamed, 2022. "Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport," Energies, MDPI, vol. 15(5), pages 1-20, March.
    13. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    14. Jelena Loncarski & Vito Giuseppe Monopoli & Giuseppe Leonardo Cascella & Francesco Cupertino, 2020. "SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    15. Kaleem Ullah & Zahid Ullah & Sheraz Aslam & Muhammad Salik Salam & Muhammad Asjad Salahuddin & Muhammad Farooq Umer & Mujtaba Humayon & Haris Shaheer, 2023. "Wind Farms and Flexible Loads Contribution in Automatic Generation Control: An Extensive Review and Simulation," Energies, MDPI, vol. 16(14), pages 1-34, July.
    16. Dominika Kaczorowska & Jacek Rezmer & Michal Jasinski & Tomasz Sikorski & Vishnu Suresh & Zbigniew Leonowicz & Pawel Kostyla & Jaroslaw Szymanda & Przemyslaw Janik, 2020. "A Case Study on Battery Energy Storage System in a Virtual Power Plant: Defining Charging and Discharging Characteristics," Energies, MDPI, vol. 13(24), pages 1-22, December.
    17. Bahman Ahmadi & Elham Shirazi, 2023. "A Heuristic-Driven Charging Strategy of Electric Vehicle for Grids with High EV Penetration," Energies, MDPI, vol. 16(19), pages 1-26, October.
    18. Muhammad Shahab & Shaorong Wang & Abdul Khalique Junejo, 2021. "Improved Control Strategy for Three-Phase Microgrid Management with Electric Vehicles Using Multi Objective Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-23, February.
    19. Solomon Feleke & Balamurali Pydi & Raavi Satish & Hossam Kotb & Mohammed Alenezi & Mokhtar Shouran, 2023. "Frequency Stability Enhancement Using Differential-Evolution- and Genetic-Algorithm-Optimized Intelligent Controllers in Multiple Virtual Synchronous Machine Systems," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    20. Srinath Belakavadi Sudarshan & Gopal Arunkumar, 2023. "Isolated DC-DC Power Converters for Simultaneous Charging of Electric Vehicle Batteries: Research Review, Design, High-Frequency Transformer Testing, Power Quality Concerns, and Future," Sustainability, MDPI, vol. 15(3), pages 1-71, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3956-:d:1142011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.