IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4757-d297604.html
   My bibliography  Save this article

Analysis of the Electrical Quantities Measured by Revenue Meters Under Different Voltage Distortions and the Influences on the Electrical Energy Billing

Author

Listed:
  • Roberto Perillo Barbosa da Silva

    (Department of Systems and Energy, University of Campinas, Campinas 13083-852, Brazil
    Center for Energy Informatics, University of Southern Denmark, 5230 Odense, Denmark)

  • Rodolfo Quadros

    (Department of Systems and Energy, University of Campinas, Campinas 13083-852, Brazil)

  • Hamid Reza Shaker

    (Center for Energy Informatics, University of Southern Denmark, 5230 Odense, Denmark)

  • Luiz Carlos Pereira da Silva

    (Department of Systems and Energy, University of Campinas, Campinas 13083-852, Brazil)

Abstract

This paper evaluates the impact of voltage distortion on the electrical quantities measured by revenue meters and the influences on the electrical energy billing. This is done through an experimental setup, which combines the following variables for the first time in an experiment: different total harmonic voltage distortion (THDv) levels; among these levels, different harmonic profiles; and different loads. A programmable alternating current (AC) power source was used in the laboratory to apply voltage signals in three electronic loads: a compact fluorescent lamp (CFL) and two light emitting diode (LED) lighting devices for which voltage signals with THDv 4.9%, 18.8% and 24.5% have been applied. All applied signals contain one or more harmonic order more commonly found in the low voltage grid (3rd, 5th and 7th). For these analyses, a power quality analyzer and a revenue meter were used. The results show that significant and diverse effects on the electrical quantities of individual loads will occur with different THDv levels and harmonic profiles. Comparing with a reference case (sinusoidal condition), when a distorted signal was applied, for the same THDv level, some parameters remained numerically the same, some have improved and some have become worse. This study shows that the effects of combination of the variables such as different THDv level with different harmonic profiles on electrical quantities of loads are not as clear as the effects of considering only one variable. The results of this paper shed light on such effects.

Suggested Citation

  • Roberto Perillo Barbosa da Silva & Rodolfo Quadros & Hamid Reza Shaker & Luiz Carlos Pereira da Silva, 2019. "Analysis of the Electrical Quantities Measured by Revenue Meters Under Different Voltage Distortions and the Influences on the Electrical Energy Billing," Energies, MDPI, vol. 12(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4757-:d:297604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miroslaw Wlas & Stanislaw Galla, 2018. "The Influence of LED Lighting Sources on the Nature of Power Factor," Energies, MDPI, vol. 11(6), pages 1-12, June.
    2. Natthanon Phannil & Chaiyan Jettanasen & Atthapol Ngaopitakkul, 2018. "Harmonics and Reduction of Energy Consumption in Lighting Systems by Using LED Lamps," Energies, MDPI, vol. 11(11), pages 1-27, November.
    3. Alberto Dolara & Sonia Leva, 2012. "Power Quality and Harmonic Analysis of End User Devices," Energies, MDPI, vol. 5(12), pages 1-14, December.
    4. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review," Energies, MDPI, vol. 10(12), pages 1-29, December.
    5. Guowei Cai & Lixin Wang & Deyou Yang & Zhenglong Sun & Bo Wang, 2019. "Harmonic Detection for Power Grids Using Adaptive Variational Mode Decomposition," Energies, MDPI, vol. 12(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Silva, Roberto Perillo Barbosa & Quadros, Rodolfo & Shaker, Hamid Reza & da Silva, Luiz Carlos Pereira, 2020. "Effects of mixed electronic loads on the electrical energy systems considering different loading conditions with focus on power quality and billing issues," Applied Energy, Elsevier, vol. 277(C).
    2. Łukasz Michalec & Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Łukasz Jasiński & Vishnu Suresh, 2021. "Impact of Harmonic Currents of Nonlinear Loads on Power Quality of a Low Voltage Network–Review and Case Study," Energies, MDPI, vol. 14(12), pages 1-19, June.
    3. Renan Quijano Cetina & Yljon Seferi & Steven M. Blair & Paul S. Wright, 2021. "Energy Metering Integrated Circuit Behavior beyond Standards Requirements," Energies, MDPI, vol. 14(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Lodetti & Izaskun Azcarate & José Julio Gutiérrez & Luis Alberto Leturiondo & Koldo Redondo & Purificación Sáiz & Julio J. Melero & Jorge Bruna, 2019. "Flicker of Modern Lighting Technologies Due to Rapid Voltage Changes," Energies, MDPI, vol. 12(5), pages 1-16, March.
    2. Joon-Ho Kim & Jin-O Kim, 2020. "Analysis and Mitigation on Switching Transients of Medium-Voltage Low-Harmonic Filter Banks," Energies, MDPI, vol. 13(9), pages 1-14, May.
    3. Calin Ciugudeanu & Mircea Buzdugan & Dorin Beu & Angel Campianu & Catalin Daniel Galatanu, 2019. "Sustainable Lighting-Retrofit Versus Dedicated Luminaires-Light Versus Power Quality," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    4. Przemysław Ptak & Krzysztof Górecki & Jakub Heleniak & Mariusz Orlikowski, 2021. "Investigations of Electrical and Optical Parameters of Some LED Luminaires—A Study Case," Energies, MDPI, vol. 14(6), pages 1-18, March.
    5. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    6. K. Muthuvel & M. Vijayakumar, 2020. "Solar PV Sustained Quasi Z-Source Network-Based Unified Power Quality Conditioner for Enhancement of Power Quality," Energies, MDPI, vol. 13(10), pages 1-26, May.
    7. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.
    8. Denis Stanescu & Angela Digulescu & Cornel Ioana & Alexandru Serbanescu, 2021. "Entropy-Based Characterization of the Transient Phenomena—Systemic Approach," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
    9. Jairo Hernández & Andrés A. Romero & Jan Meyer & Ana María Blanco, 2020. "Impact of Nonlinear Lighting Loads on the Neutral Conductor Current of Low Voltage Residential Grids," Energies, MDPI, vol. 13(18), pages 1-20, September.
    10. Alexandre Serrano-Fontova & Pablo Casals Torrens & Ricard Bosch, 2019. "Power Quality Disturbances Assessment during Unintentional Islanding Scenarios. A Contribution to Voltage Sag Studies," Energies, MDPI, vol. 12(16), pages 1-21, August.
    11. Alena Otcenasova & Roman Bodnar & Michal Regula & Marek Hoger & Michal Repak, 2017. "Methodology for Determination of the Number of Equipment Malfunctions Due to Voltage Sags," Energies, MDPI, vol. 10(3), pages 1-26, March.
    12. Jiahao Yang & Xiangguo Li & Juntao Fei, 2023. "Intelligent Global Fast Terminal Sliding Mode Control of Active Power Filter," Mathematics, MDPI, vol. 11(4), pages 1-23, February.
    13. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    14. Gytis Petrauskas & Gytis Svinkunas, 2021. "Application of Matrix VFD for Power Factor Improvement in LED Lighting Sources Loaded Power Distribution Lines," Energies, MDPI, vol. 14(12), pages 1-19, June.
    15. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    16. Xianyong Xiao & Xian Zheng & Ying Wang & Shuangting Xu & Zixuan Zheng, 2018. "A Method for Utility Harmonic Impedance Estimation Based on Constrained Complex Independent Component Analysis," Energies, MDPI, vol. 11(9), pages 1-15, August.
    17. Sadeghian, Omid & Mohammadi-Ivatloo, Behnam & Oshnoei, Arman & Aghaei, Jamshid, 2024. "Unveiling the potential of renewable energy and battery utilization in real-world public lighting systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Gu Ye & Michiel Nijhuis & Vladimir Cuk & J.F.G. (Sjef) Cobben, 2017. "Stochastic Residential Harmonic Source Modeling for Grid Impact Studies," Energies, MDPI, vol. 10(3), pages 1-21, March.
    19. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    20. Yu Wang & Yuewu Wang & Si-Zhe Chen & Guidong Zhang & Yun Zhang, 2018. "A Simplified Minimum DC-Link Voltage Control Strategy for Shunt Active Power Filters," Energies, MDPI, vol. 11(9), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4757-:d:297604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.