IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7541-d677049.html
   My bibliography  Save this article

Current Status of the Pyrolysis and Gasification Mechanism of Biomass

Author

Listed:
  • Dmitrii Glushkov

    (Heat and Mass Transfer Simulation Laboratory, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia)

  • Galina Nyashina

    (Heat and Mass Transfer Simulation Laboratory, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia)

  • Anatolii Shvets

    (Heat and Mass Transfer Simulation Laboratory, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia)

  • Amaro Pereira

    (Institute of Graduate Studies in Engineering, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil)

  • Anand Ramanathan

    (Department of Mechanical Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India)

Abstract

The development of the world economy goes hand in hand with increased energy consumption and global warming caused by greenhouse gases. These issues can be tackled by implementing promising technologies of power generation. They differ from the known ones in that new energy resources are involved, e.g., mixtures of various types of biomass, provided that hazardous gas emissions during the production process are minimized. The development of high-potential energy-efficient and environmentally friendly technologies which use biofuel in the energy industry requires scientific evidence for the mechanisms, conditions, and characteristics of physical and chemical processes during pyrolysis and gasification of biomass, including its multicomponent types. This article analyzes the world technologies and research findings in the field of biomass pyrolysis and gasification. The effect of a group of factors on the intensity and completeness of gasification and pyrolysis of biofuel compositions has been determined. These factors include the size, shape, and surface structure of biomass particles; component composition and properties of fuel mixtures; mechanism and intensity of heat supply; and the temperature field in the reactor filled with solid and gaseous products. The most effective values of these characteristics have been established.

Suggested Citation

  • Dmitrii Glushkov & Galina Nyashina & Anatolii Shvets & Amaro Pereira & Anand Ramanathan, 2021. "Current Status of the Pyrolysis and Gasification Mechanism of Biomass," Energies, MDPI, vol. 14(22), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7541-:d:677049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kangil Choe, 2021. "Review of Wood Biomass Cyclone Burner," Energies, MDPI, vol. 14(16), pages 1-18, August.
    2. Zeng, Kuo & Li, Rui & Minh, Doan Pham & Weiss-Hortala, Elsa & Nzihou, Ange & He, Xiao & Flamant, Gilles, 2019. "Solar pyrolysis of heavy metal contaminated biomass for gas fuel production," Energy, Elsevier, vol. 187(C).
    3. Bingyao Zeng & Naoto Shimizu, 2021. "Hydrogen Generation from Wood Chip and Biochar by Combined Continuous Pyrolysis and Hydrothermal Gasification," Energies, MDPI, vol. 14(13), pages 1-11, June.
    4. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.
    5. Yahaya, Ahmad Zubair & Somalu, Mahendra Rao & Muchtar, Andanastuti & Sulaiman, Shaharin Anwar & Wan Daud, Wan Ramli, 2019. "Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor," Energy, Elsevier, vol. 175(C), pages 931-940.
    6. Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
    7. Lv, Pengmei & Yuan, Zhenhong & Ma, Longlong & Wu, Chuangzhi & Chen, Yong & Zhu, Jingxu, 2007. "Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier," Renewable Energy, Elsevier, vol. 32(13), pages 2173-2185.
    8. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    9. Kirubakaran, V. & Sivaramakrishnan, V. & Nalini, R. & Sekar, T. & Premalatha, M. & Subramanian, P., 2009. "A review on gasification of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 179-186, January.
    10. Goyal, H.B. & Seal, Diptendu & Saxena, R.C., 2008. "Bio-fuels from thermochemical conversion of renewable resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 504-517, February.
    11. Williams, Paul T. & Besler, Serpil, 1996. "The influence of temperature and heating rate on the slow pyrolysis of biomass," Renewable Energy, Elsevier, vol. 7(3), pages 233-250.
    12. Wickramaarachchi, W.A.M.K.P. & Narayana, Mahinsasa, 2020. "Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling," Renewable Energy, Elsevier, vol. 146(C), pages 1153-1165.
    13. Sibiya, N.T. & Oboirien, B. & Lanzini, A. & Gandiglio, M. & Ferrero, D. & Papurello, D. & Bada, S.O., 2021. "Effect of different pre-treatment methods on gasification properties of grass biomass," Renewable Energy, Elsevier, vol. 170(C), pages 875-883.
    14. Kuznetsov, G.V. & Syrodoy, S.V. & Gutareva, N.Y., 2020. "Influence of a wet wood particle form on the characteristics of its ignition in the high-temperature medium," Renewable Energy, Elsevier, vol. 145(C), pages 1474-1486.
    15. Ahmed, Tigabwa Y. & Ahmad, Murni M. & Yusup, Suzana & Inayat, Abrar & Khan, Zakir, 2012. "Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2304-2315.
    16. Reinhard Rauch & Jitka Hrbek & Hermann Hofbauer, 2014. "Biomass gasification for synthesis gas production and applications of the syngas," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 343-362, July.
    17. Hoffmann, Bettina Susanne & Szklo, Alexandre, 2011. "Integrated gasification combined cycle and carbon capture: A risky option to mitigate CO2 emissions of coal-fired power plants," Applied Energy, Elsevier, vol. 88(11), pages 3917-3929.
    18. Zhang, Ziyin & Pang, Shusheng, 2019. "Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier," Renewable Energy, Elsevier, vol. 132(C), pages 416-424.
    19. Shen, Yafei & Yoshikawa, Kunio, 2013. "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 371-392.
    20. Sand, U. & Sandberg, J. & Larfeldt, J. & Bel Fdhila, R., 2008. "Numerical prediction of the transport and pyrolysis in the interior and surrounding of dry and wet wood log," Applied Energy, Elsevier, vol. 85(12), pages 1208-1224, December.
    21. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    22. Korshunov, Alexey & Kichatov, Boris & Melnikova, Ksenia & Gubernov, Vladimir & Yakovenko, Ivan & Kiverin, Alexey & Golubkov, Alexandr, 2019. "Pyrolysis characteristics of biomass torrefied in a quiescent mineral layer," Energy, Elsevier, vol. 187(C).
    23. Ahmad, Anis Atikah & Zawawi, Norfadhila Abdullah & Kasim, Farizul Hafiz & Inayat, Abrar & Khasri, Azduwin, 2016. "Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1333-1347.
    24. Park, Seo Yun & Oh, Gunung & Kim, Kwangyul & Seo, Myung Won & Ra, Ho Won & Mun, Tae Young & Lee, Jae Goo & Yoon, Sang Jun, 2017. "Deactivation characteristics of Ni and Ru catalysts in tar steam reforming," Renewable Energy, Elsevier, vol. 105(C), pages 76-83.
    25. Marta Jach-Nocoń & Grzegorz Pełka & Wojciech Luboń & Tomasz Mirowski & Adam Nocoń & Przemysław Pachytel, 2021. "An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types," Energies, MDPI, vol. 14(15), pages 1-15, July.
    26. Makkawi, Yassir & El Sayed, Yehya & Salih, Mubarak & Nancarrow, Paul & Banks, Scott & Bridgwater, Tony, 2019. "Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 143(C), pages 719-730.
    27. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aristide Giuliano, 2023. "The Transition of Scientific Research from Biomass-to-Energy/Biofuels to Biomass-to-Biochemicals in a Biorefinery Systems Framework," Energies, MDPI, vol. 16(5), pages 1-4, February.
    2. Janaki Komandur & Abhishek Kumar & Preethi Para & Kaustubha Mohanty, 2022. "Kinetic Parameters Estimation of Thermal and Co-Pyrolysis of Groundnut De-oiled Cake and Polyethylene Terephthalate (PET) Waste," Energies, MDPI, vol. 15(20), pages 1-12, October.
    3. A. S. M. Sazzad Parveg & Ramin Ordikhani-Seyedlar & Tejasvi Sharma & Scott K. Shaw & Albert Ratner, 2022. "A Recycling Pathway for Rare Earth Metals (REMs) from E-Waste through Co-Gasification with Biomass," Energies, MDPI, vol. 15(23), pages 1-25, December.
    4. Jacek Grams, 2022. "Upgrading of Lignocellulosic Biomass to Hydrogen-Rich Gas," Energies, MDPI, vol. 16(1), pages 1-5, December.
    5. Artur Bieniek & Wojciech Jerzak & Małgorzata Sieradzka & Łukasz Mika & Karol Sztekler & Aneta Magdziarz, 2022. "Intermediate Pyrolysis of Brewer’s Spent Grain: Impact of Gas Atmosphere," Energies, MDPI, vol. 15(7), pages 1-17, March.
    6. Slavomír Podolský & Miroslav Variny & Tomáš Kurák, 2023. "Carbon-Energy Impact Analysis of Heavy Residue Gasification Plant Integration into Oil Refinery," Resources, MDPI, vol. 12(6), pages 1-23, May.
    7. Machineni, Lakshmi & Deepanraj, B. & Chew, Kit Wayne & Rao, A. Gangagni, 2023. "Biohydrogen production from lignocellulosic feedstock: Abiotic and biotic methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Safavi, Aysan & Richter, Christiaan & Unnthorsson, Runar, 2023. "Revisiting the reaction scheme of slow pyrolysis of woody biomass," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    2. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    3. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    4. Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    6. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Sukamal Sarkar & Milan Skalicky & Akbar Hossain & Marian Brestic & Saikat Saha & Sourav Garai & Krishnendu Ray & Koushik Brahmachari, 2020. "Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    8. Jung, Sungyup & Kwon, Dohee & Park, Young-Kwon & Lee, Kyun Ho & Kwon, Eilhann E., 2020. "Power generation using rice husk derived fuels from CO2-assisted catalytic pyrolysis over Co/Al2O3," Energy, Elsevier, vol. 206(C).
    9. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    11. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    12. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    13. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    14. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    15. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    16. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    17. Przybyla, Grzegorz & Szlek, Andrzej & Haggith, Dale & Sobiesiak, Andrzej, 2016. "Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas," Energy, Elsevier, vol. 116(P3), pages 1464-1478.
    18. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    19. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    20. Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7541-:d:677049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.