IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4472-d406439.html
   My bibliography  Save this article

Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues

Author

Listed:
  • Lech Nowicki

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

  • Dorota Siuta

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

  • Maciej Markowski

    (EKO-SERWIS S.C., Wierzbowa 48, 90-133 Lodz, Poland)

Abstract

A deoiled rapeseed press cake (RPC) was pyrolyzed by heating at a slow heating rate to 1000 °C in a fixed bed reactor, and the produced char was then gasified to obtain data for the kinetic modeling of the process. The gasification experiments were performed in a thermogravimetric analyzer (TGA) under steam/argon mixtures at different temperatures (750, 800 and 850 °C) and steam mole fractions (0.17 and 0.45). The three most commonly used gas-solid kinetic models, the random pore model, the volumetric model and the shrinking core model were used to describe the conversion of char during steam gasification. The objective of the kinetic study was to determine the kinetic parameters and to assess the ability of the models to predict the RPC conversion during steam gasification. A TGA-MS analysis was applied to assess the composition of the product gas. The main steam gasification product of the RPC was hydrogen (approximately 60 mol % of the total product). The volumetric model was able to accurately predict the behavior of the RPC char gasification with steam at temperatures of 750–850 °C and steam concentrations less than 0.45 mole fraction. The activation energy and the reaction order with respect to steam were equal to 166 kJ/mol and 0.5, respectively, and were typical values for the gasification of biomass chars with steam

Suggested Citation

  • Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4472-:d:406439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    2. Al Arni, Saleh, 2018. "Comparison of slow and fast pyrolysis for converting biomass into fuel," Renewable Energy, Elsevier, vol. 124(C), pages 197-201.
    3. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    4. Reinhard Rauch & Jitka Hrbek & Hermann Hofbauer, 2014. "Biomass gasification for synthesis gas production and applications of the syngas," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 343-362, July.
    5. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    6. Pala, Laxmi Prasad Rao & Wang, Qi & Kolb, Gunther & Hessel, Volker, 2017. "Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, Elsevier, vol. 101(C), pages 484-492.
    7. Onay, Ozlem & Kockar, O.Mete, 2003. "Slow, fast and flash pyrolysis of rapeseed," Renewable Energy, Elsevier, vol. 28(15), pages 2417-2433.
    8. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Carbon Dioxide Gasification Kinetics of Char from Rapeseed Oil Press Cake," Energies, MDPI, vol. 13(9), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Schwabauer & Marco Mancini & Yunus Poyraz & Roman Weber, 2021. "On the Mathematical Modelling of a Moving-Bed Counter-Current Gasifier Fuelled with Wood-Pellets," Energies, MDPI, vol. 14(18), pages 1-24, September.
    2. Katerina Klemencova & Barbora Grycova & Pavel Lestinsky, 2022. "Influence of Miscanthus Rhizome Pyrolysis Operating Conditions on Products Properties," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    3. Alejandro Lyons Cerón & Alar Konist, 2023. "Co-Pyrolysis of Woody Biomass and Oil Shale in a Batch Reactor in CO 2 , CO 2 -H 2 O, and Ar Atmospheres," Energies, MDPI, vol. 16(7), pages 1-14, March.
    4. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    2. Donatella Barisano & Giuseppe Canneto & Francesco Nanna & Antonio Villone & Emanuele Fanelli & Cesare Freda & Massimiliano Grieco & Andrea Lotierzo & Giacinto Cornacchia & Giacobbe Braccio & Vera Marc, 2022. "Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II," Energies, MDPI, vol. 15(13), pages 1-16, June.
    3. Stolecka, Katarzyna & Rusin, Andrzej, 2020. "Analysis of hazards related to syngas production and transport," Renewable Energy, Elsevier, vol. 146(C), pages 2535-2555.
    4. Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
    5. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    6. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    7. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    8. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    9. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Carbon Dioxide Gasification Kinetics of Char from Rapeseed Oil Press Cake," Energies, MDPI, vol. 13(9), pages 1-12, May.
    10. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    12. Torres, Erick & Rodriguez-Ortiz, Leandro A. & Zalazar, Daniela & Echegaray, Marcelo & Rodriguez, Rosa & Zhang, Huili & Mazza, Germán, 2020. "4-E (environmental, economic, energetic and exergetic) analysis of slow pyrolysis of lignocellulosic waste," Renewable Energy, Elsevier, vol. 162(C), pages 296-307.
    13. Dmitry Porshnov, 2022. "Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    14. Dmitrii Glushkov & Galina Nyashina & Anatolii Shvets & Amaro Pereira & Anand Ramanathan, 2021. "Current Status of the Pyrolysis and Gasification Mechanism of Biomass," Energies, MDPI, vol. 14(22), pages 1-24, November.
    15. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. María Pilar González-Vázquez & Fernando Rubiera & Covadonga Pevida & Daniel T. Pio & Luís A.C. Tarelho, 2021. "Thermodynamic Analysis of Biomass Gasification Using Aspen Plus: Comparison of Stoichiometric and Non-Stoichiometric Models," Energies, MDPI, vol. 14(1), pages 1-17, January.
    17. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    18. Wu, Hong & Li, Yuanyuan & Chen, Lei & Zong, Minhua, 2011. "Production of microbial oil with high oleic acid content by Trichosporon capitatum," Applied Energy, Elsevier, vol. 88(1), pages 138-142, January.
    19. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    20. José Juan Alvarado-Flores & Jorge Víctor Alcaraz-Vera & María Liliana Ávalos-Rodríguez & Erandini Guzmán-Mejía & José Guadalupe Rutiaga-Quiñones & Luís Fernando Pintor-Ibarra & Santiago José Guevara-M, 2024. "Thermochemical Production of Hydrogen from Biomass: Pyrolysis and Gasification," Energies, MDPI, vol. 17(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4472-:d:406439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.