IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v12y2023i6p66-d1157463.html
   My bibliography  Save this article

Carbon-Energy Impact Analysis of Heavy Residue Gasification Plant Integration into Oil Refinery

Author

Listed:
  • Slavomír Podolský

    (Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

  • Miroslav Variny

    (Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

  • Tomáš Kurák

    (Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

Abstract

A gasification plant may partially replace an industrial thermal plant and hydrogen production plant by polygenerating valuable products (hydrogen, power, steam) from low-value materials. Carbon energy analysis is one way of conceptually evaluating such processes. In this paper, the integration of a heavy residue (HR) gasification plant into a mid-size oil refinery (5 million t per year crude processing rate) is conceptually assessed via the comparison of electricity, natural gas and heavy residue consumption, and CO 2 emissions. The main purpose of the integration is to reduce the consumption of natural gas currently used for hydrogen production at the expense of increased HR consumption and to achieve a reduction in CO 2 emissions. Two case studies with different modes of operation were compared to base case showing that annual reduction of 2280 GWh in natural gas consumption with constant heat and hydrogen production is possible, accompanied with a slight increase in electricity purchase by 28 GWh per year. HR processing in the refinery increases by over 2800 GWh per year. The refinery’s CO 2 emissions increase by more than 20% (up to 350 kt per year) as a result, while, after incorporating external emissions into the balance, a decrease of more than 460 kt CO 2 per year can be achieved. This confirms that the integration of gasification plants within industrial enterprises and clusters has a positive environmental and energy impact and supports the idea of converting low-value material to more valuable products in polygeneration plants. The economics of HR gasifier integration in varying operations under real refinery conditions remain to be explored.

Suggested Citation

  • Slavomír Podolský & Miroslav Variny & Tomáš Kurák, 2023. "Carbon-Energy Impact Analysis of Heavy Residue Gasification Plant Integration into Oil Refinery," Resources, MDPI, vol. 12(6), pages 1-23, May.
  • Handle: RePEc:gam:jresou:v:12:y:2023:i:6:p:66-:d:1157463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/12/6/66/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/12/6/66/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Won, Wangyun & Kwon, Hweeung & Han, Jee-Hoon & Kim, Jiyong, 2017. "Design and operation of renewable energy sources based hydrogen supply system: Technology integration and optimization," Renewable Energy, Elsevier, vol. 103(C), pages 226-238.
    2. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    3. Cao, Zhikai & Wu, Qi & Zhou, Hua & Chen, Pingping & You, Fengqi, 2020. "Dynamic modeling, systematic analysis, and operation optimization for shell entrained-flow heavy residue gasifier," Energy, Elsevier, vol. 197(C).
    4. Dmitrii Glushkov & Galina Nyashina & Anatolii Shvets & Amaro Pereira & Anand Ramanathan, 2021. "Current Status of the Pyrolysis and Gasification Mechanism of Biomass," Energies, MDPI, vol. 14(22), pages 1-24, November.
    5. Miroslav Variny & Dominika Jediná & Miroslav Rimár & Ján Kizek & Marianna Kšiňanová, 2021. "Cutting Oxygen Production-Related Greenhouse Gas Emissions by Improved Compression Heat Management in a Cryogenic Air Separation Unit," IJERPH, MDPI, vol. 18(19), pages 1-32, October.
    6. Vera Marcantonio & Michael Müller & Enrico Bocci, 2021. "A Review of Hot Gas Cleaning Techniques for Hydrogen Chloride Removal from Biomass-Derived Syngas," Energies, MDPI, vol. 14(20), pages 1-15, October.
    7. Miao, Qi & Zhu, Jesse & Barghi, Shahzad & Wu, Chuangzhi & Yin, Xiuli & Zhou, Zhaoqiu, 2013. "Modeling biomass gasification in circulating fluidized beds," Renewable Energy, Elsevier, vol. 50(C), pages 655-661.
    8. Moon, Dong-Kyu & Lee, Dong-Geun & Lee, Chang-Ha, 2016. "H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process," Applied Energy, Elsevier, vol. 183(C), pages 760-774.
    9. Meratizaman, Mousa & Monadizadeh, Sina & Tohidi Sardasht, Mohammad & Amidpour, Majid, 2015. "Techno economic and environmental assessment of using gasification process in order to mitigate the emission in the available steam power cycle," Energy, Elsevier, vol. 83(C), pages 1-14.
    10. Reyhani, Hamed Akbarpour & Meratizaman, Mousa & Ebrahimi, Armin & Pourali, Omid & Amidpour, Majid, 2016. "Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification," Energy, Elsevier, vol. 107(C), pages 141-164.
    11. Ashizawa, Masami & Hara, Saburo & Kidoguchi, Kazuhiro & Inumaru, Jun, 2005. "Gasification characteristics of extra-heavy oil in a research-scale gasifier," Energy, Elsevier, vol. 30(11), pages 2194-2205.
    12. Castillo Santiago, York & Martínez González, Aldemar & Venturini, Osvaldo J. & Sphaier, Leandro A. & Ocampo Batlle, Eric A., 2022. "Energetic and environmental assessment of oil sludge use in a gasifier/gas microturbine system," Energy, Elsevier, vol. 244(PB).
    13. Stanislaw Szwaja & Anna Poskart & Monika Zajemska & Magdalena Szwaja, 2019. "Theoretical and Experimental Analysis on Co-Gasification of Sewage Sludge with Energetic Crops," Energies, MDPI, vol. 12(9), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Grams, 2022. "Upgrading of Lignocellulosic Biomass to Hydrogen-Rich Gas," Energies, MDPI, vol. 16(1), pages 1-5, December.
    2. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    3. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    4. Martínez-Lera, Susana & Pallarés Ranz, Javier, 2016. "On the development of a wood gasification modelling approach with special emphasis on primary devolatilization and tar formation and destruction phenomena," Energy, Elsevier, vol. 113(C), pages 643-652.
    5. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    6. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    7. Zhang, Zhiyuan & Wang, Xutao & Zhang, Lilin & Zhou, Hengtao & Ju, Rui & Rao, Peijun & Guo, Xiaoyu & Han, Yaqian & Chen, Hongwei, 2022. "Characteristics of steel slag as an oxygen carrier for chemical looping gasification of sewage sludge," Energy, Elsevier, vol. 247(C).
    8. Donatella Barisano & Giuseppe Canneto & Francesco Nanna & Antonio Villone & Emanuele Fanelli & Cesare Freda & Massimiliano Grieco & Andrea Lotierzo & Giacinto Cornacchia & Giacobbe Braccio & Vera Marc, 2022. "Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II," Energies, MDPI, vol. 15(13), pages 1-16, June.
    9. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    10. Szklo, Alexandre & Schaeffer, Roberto, 2006. "Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition," Energy, Elsevier, vol. 31(14), pages 2513-2522.
    11. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    12. Hanaoka, Toshiaki & Fujimoto, Shinji & Kihara, Hideyuki, 2019. "Improvement of the 1,3-butadiene production process from lignin – A comparison with the gasification power generation process," Renewable Energy, Elsevier, vol. 135(C), pages 1303-1313.
    13. Yang, Shenyao & Hu, Shilai & Qi, Zhilin & Qi, Huiqing & Zhao, Guanqun & Li, Jiqiang & Yan, Wende & Huang, Xiaoliang, 2024. "Experiment and prediction for dynamic storage capacity of underground gas storage rebuilt from hydrocarbon reservoir," Renewable Energy, Elsevier, vol. 222(C).
    14. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Xiao Li & Lingzhi Yang & Yong Hao, 2023. "Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture," Energies, MDPI, vol. 16(20), pages 1-16, October.
    16. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    17. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    19. Ehrenstein, Michael & Galán-Martín, Ángel & Tulus, Victor & Guillén-Gosálbez, Gonzalo, 2020. "Optimising fuel supply chains within planetary boundaries: A case study of hydrogen for road transport in the UK," Applied Energy, Elsevier, vol. 276(C).
    20. Mirzaei, Mohammad Reza & Kasaeian, Alibakhsh & Sadeghi Motlagh, Maryam & Fereidoni, Sahar, 2024. "Thermo-economic analysis of an integrated combined heating, cooling, and power unit with dish collector and organic Rankine cycle," Energy, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:12:y:2023:i:6:p:66-:d:1157463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.