IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v53y2016icp1333-1347.html
   My bibliography  Save this article

Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation

Author

Listed:
  • Ahmad, Anis Atikah
  • Zawawi, Norfadhila Abdullah
  • Kasim, Farizul Hafiz
  • Inayat, Abrar
  • Khasri, Azduwin

Abstract

Currently, the use of biomass as an energy source has received a tremendous amount of interest from all over the world due to its advantage in providing a continuous feedstock supply. Moreover, when compared to fossil fuels, biomass fuels possess negligible sulfur concentrations, produce less ash, and generate far less emissions into the air. Biomass has a potential to be a very promising alternative source of raw material for syngas production due to its tremendous availability. Syngas can be produced from the gasification of a biomass. However, this process requires a significant amount of energy due to the endothermic behavior of the reaction. The energy consumption during the gasification process is a major constraint on the thermal efficiency and on the design of the gasifier. Therefore, a substantial improvement and the optimization of the available gasification process are very crucial in developing a sustainable utilization of these renewable natural resources. This review article focuses on highlighting the characteristics and performances of the different types of gasifiers under variable process parameters that will affect the yields of the end products as well as the composition of the gas. The various types of models used in the simulations, the optimization of the gasification conditions and the economic evaluation of the gasification process will also be discussed.

Suggested Citation

  • Ahmad, Anis Atikah & Zawawi, Norfadhila Abdullah & Kasim, Farizul Hafiz & Inayat, Abrar & Khasri, Azduwin, 2016. "Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1333-1347.
  • Handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:1333-1347
    DOI: 10.1016/j.rser.2015.09.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211501000X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.09.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    2. Alauddin, Zainal Alimuddin Bin Zainal & Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2010. "Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2852-2862, December.
    3. Lv, Pengmei & Yuan, Zhenhong & Ma, Longlong & Wu, Chuangzhi & Chen, Yong & Zhu, Jingxu, 2007. "Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier," Renewable Energy, Elsevier, vol. 32(13), pages 2173-2185.
    4. Ahmed, Tigabwa Y. & Ahmad, Murni M. & Yusup, Suzana & Inayat, Abrar & Khan, Zakir, 2012. "Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2304-2315.
    5. Sharmina Begum & Mohammad G. Rasul & Delwar Akbar & David Cork, 2013. "An Experimental and Numerical Investigation of Fluidized Bed Gasification of Solid Waste," Energies, MDPI, vol. 7(1), pages 1-19, December.
    6. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2010. "Review and analysis of biomass gasification models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2841-2851, December.
    7. Lv, Pengmei & Wu, Chuangzhi & Ma, Longlong & Yuan, Zhenhong, 2008. "A study on the economic efficiency of hydrogen production from biomass residues in China," Renewable Energy, Elsevier, vol. 33(8), pages 1874-1879.
    8. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer–Tropsch synthesis," Energy, Elsevier, vol. 35(6), pages 2557-2579.
    9. Abrar Inayat & Murni M. Ahmad & Suzana Yusup & Mohamed Ibrahim Abdul Mutalib, 2010. "Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach," Energies, MDPI, vol. 3(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    3. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    4. Vera Marcantonio & Enrico Bocci & Danilo Monarca, 2019. "Development of a Chemical Quasi-Equilibrium Model of Biomass Waste Gasification in a Fluidized-Bed Reactor by Using Aspen Plus," Energies, MDPI, vol. 13(1), pages 1-15, December.
    5. Susastriawan, A.A.P. & Saptoadi, Harwin & Purnomo,, 2017. "Small-scale downdraft gasifiers for biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 989-1003.
    6. Domenico Borello & Antonio M. Pantaleo & Michele Caucci & Benedetta De Caprariis & Paolo De Filippis & Nilay Shah, 2017. "Modeling and Experimental Study of a Small Scale Olive Pomace Gasifier for Cogeneration: Energy and Profitability Analysis," Energies, MDPI, vol. 10(12), pages 1-17, November.
    7. Yueshi Wu & Weihong Yang & Wlodzimierz Blasiak, 2014. "Energy and Exergy Analysis of High Temperature Agent Gasification of Biomass," Energies, MDPI, vol. 7(4), pages 1-16, April.
    8. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    9. Gröbl, Thomas & Walter, Heimo & Haider, Markus, 2012. "Biomass steam gasification for production of SNG – Process design and sensitivity analysis," Applied Energy, Elsevier, vol. 97(C), pages 451-461.
    10. Ngo, Son Ich & Nguyen, Thanh D.B. & Lim, Young-Il & Song, Byung-Ho & Lee, Uen-Do & Choi, Young-Tai & Song, Jae-Hun, 2011. "Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model," Applied Energy, Elsevier, vol. 88(12), pages 5208-5220.
    11. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    12. Patra, Tapas Kumar & Nimisha, K.R. & Sheth, Pratik N., 2016. "A comprehensive dynamic model for downdraft gasifier using heat and mass transport coupled with reaction kinetics," Energy, Elsevier, vol. 116(P1), pages 1230-1242.
    13. Król, Danuta & Poskrobko, Sławomir, 2016. "High-methane gasification of fuels from waste – Experimental identification," Energy, Elsevier, vol. 116(P1), pages 592-600.
    14. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    15. Yepes Maya, Diego Mauricio & Silva Lora, Electo Eduardo & Andrade, Rubenildo Vieira & Ratner, Albert & Martínez Angel, Juan Daniel, 2021. "Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach," Renewable Energy, Elsevier, vol. 177(C), pages 1014-1030.
    16. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    17. Emami Taba, Leila & Irfan, Muhammad Faisal & Wan Daud, Wan Ashri Mohd & Chakrabarti, Mohammed Harun, 2012. "The effect of temperature on various parameters in coal, biomass and CO-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5584-5596.
    18. Karl, Jürgen & Pröll, Tobias, 2018. "Steam gasification of biomass in dual fluidized bed gasifiers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 64-78.
    19. Tejasvi Sharma & Diego M. Yepes Maya & Francisco Regis M. Nascimento & Yunye Shi & Albert Ratner & Electo E. Silva Lora & Lourival Jorge Mendes Neto & Jose Carlos Escobar Palacios & Rubenildo Vieira A, 2018. "An Experimental and Theoretical Study of the Gasification of Miscanthus Briquettes in a Double-Stage Downdraft Gasifier: Syngas, Tar, and Biochar Characterization," Energies, MDPI, vol. 11(11), pages 1-23, November.
    20. Janajreh, Isam & Adeyemi, Idowu & Raza, Syed Shabbar & Ghenai, Chaouki, 2021. "A review of recent developments and future prospects in gasification systems and their modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:1333-1347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.