IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1474-1486.html
   My bibliography  Save this article

Influence of a wet wood particle form on the characteristics of its ignition in the high-temperature medium

Author

Listed:
  • Kuznetsov, G.V.
  • Syrodoy, S.V.
  • Gutareva, N.Y.

Abstract

The results of the experimental and theoretical studies of the processes of the single particles ignition of the wood biomass of various forms (a cube, a cylinder and a sphere) have been presented. According to the results of the experimental studies, it has been established that the particles form can have a fairly significant effect on the characteristics and conditions of ignition. It has been shown that the wood particles in the form of a sphere are ignited much faster than cylindrical and cubic ones (ignition delay times are less by 56%). Such a tendency is maintained for particles sizes from 1 · 10−3 m to 3 · 10−3 m. According to the results of the experiments, the mathematical model for ignition of a particle of wet wood biomass has been formulated, taking into account the joint occurrence of the main processes of the thermal preparation (radiation-convective particle heating, evaporation of water, thermal decomposition of the organic part of the fuel, output, ignition and combustion of gaseous pyrolysis products, ignition of the char residue).

Suggested Citation

  • Kuznetsov, G.V. & Syrodoy, S.V. & Gutareva, N.Y., 2020. "Influence of a wet wood particle form on the characteristics of its ignition in the high-temperature medium," Renewable Energy, Elsevier, vol. 145(C), pages 1474-1486.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1474-1486
    DOI: 10.1016/j.renene.2019.04.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119305300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitrii Glushkov & Galina Nyashina & Anatolii Shvets & Amaro Pereira & Anand Ramanathan, 2021. "Current Status of the Pyrolysis and Gasification Mechanism of Biomass," Energies, MDPI, vol. 14(22), pages 1-24, November.
    2. Kuznetsov, G.V. & Syrodoy, S.V. & Borisov, B.V. & Kostoreva, Zh.A. & Gutareva, N. Yu & Kostoreva, A.A., 2023. "Influence of homeomorphism of the surface of a wood particle on the characteristics of its ignition," Renewable Energy, Elsevier, vol. 203(C), pages 828-840.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1474-1486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.