IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p811-d139026.html
   My bibliography  Save this article

Biofuels Production by Biomass Gasification: A Review

Author

Listed:
  • Antonio Molino

    (Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Territorial and Production System Sustainability Department, 80055 Portici, Italy)

  • Vincenzo Larocca

    (Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Division of Renewable Energy, 75026 Rotondella, Italy)

  • Simeone Chianese

    (Dipartimento di Ingegneria, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy)

  • Dino Musmarra

    (Dipartimento di Ingegneria, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy)

Abstract

The production of biofuels from renewable sources is a major challenge in research. Methanol, ethanol, dimethyl ether (DME), synthetic natural gas (SNG), and hydrogen can be produced from syngas which is the result of the gasification of biomasses. Syngas composition varies according to the gasification technology used (such as fixed bed reactors, fluidized bed reactors, entrained flow reactors), the feedstock characteristics, and the operating parameters. This paper presents a review of the predominant biomass gasification technologies and biofuels obtained from syngas by biomass gasification.

Suggested Citation

  • Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:811-:d:139026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/811/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/811/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stelmachowski, Marek & Nowicki, Lech, 2003. "Fuel from the synthesis gas--the role of process engineering," Applied Energy, Elsevier, vol. 74(1-2), pages 85-93, January.
    2. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    3. Loha, Chanchal & Gu, Sai & De Wilde, Juray & Mahanta, Pinakeswar & Chatterjee, Pradip K., 2014. "Advances in mathematical modeling of fluidized bed gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 688-715.
    4. Ajanovic, Amela, 2011. "Biofuels versus food production: Does biofuels production increase food prices?," Energy, Elsevier, vol. 36(4), pages 2070-2076.
    5. Nancy Eloísa Rodríguez-Olalde & Erick Alejandro Mendoza-Chávez & Agustín Jaime Castro-Montoya & Jaime Saucedo-Luna & Rafael Maya-Yescas & José Guadalupe Rutiaga-Quiñones & José María Ponce Ortega, 2015. "Simulation of Syngas Production from Lignin Using Guaiacol as a Model Compound," Energies, MDPI, vol. 8(7), pages 1-10, June.
    6. van der Heijden, Harro & Ptasinski, Krzysztof J., 2012. "Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis," Energy, Elsevier, vol. 46(1), pages 200-210.
    7. Armando Caldeira-Pires & Sandra Maria Da Luz & Silvia Palma-Rojas & Thiago Oliveira Rodrigues & Vanessa Chaves Silverio & Frederico Vilela & Paulo Cesar Barbosa & Ana Maria Alves, 2013. "Sustainability of the Biorefinery Industry for Fuel Production," Energies, MDPI, vol. 6(1), pages 1-22, January.
    8. Ping Wang & Mehrdad Massoudi, 2013. "Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions," Energies, MDPI, vol. 6(2), pages 1-23, February.
    9. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    10. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2006. "More efficient biomass gasification via torrefaction," Energy, Elsevier, vol. 31(15), pages 3458-3470.
    11. Vitasari, Caecilia R. & Jurascik, Martin & Ptasinski, Krzysztof J., 2011. "Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock," Energy, Elsevier, vol. 36(6), pages 3825-3837.
    12. Hamad, Mohamed A. & Radwan, Aly M. & Heggo, Dalia A. & Moustafa, Tarek, 2016. "Hydrogen rich gas production from catalytic gasification of biomass," Renewable Energy, Elsevier, vol. 85(C), pages 1290-1300.
    13. Sansaniwal, S.K. & Pal, K. & Rosen, M.A. & Tyagi, S.K., 2017. "Recent advances in the development of biomass gasification technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 363-384.
    14. Gañan, J. & Al-Kassir Abdulla, A. & Miranda, A.B. & Turegano, J. & Correia, S. & Cuerda, E.M., 2005. "Energy production by means of gasification process of residuals sourced in Extremadura (Spain)," Renewable Energy, Elsevier, vol. 30(11), pages 1759-1769.
    15. Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
    16. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    17. Lv, Pengmei & Yuan, Zhenhong & Ma, Longlong & Wu, Chuangzhi & Chen, Yong & Zhu, Jingxu, 2007. "Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier," Renewable Energy, Elsevier, vol. 32(13), pages 2173-2185.
    18. Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
    19. Türe, Semra & Uzun, Davut & Türe, I.Engin, 1997. "The potential use of sweet sorghum as a non-polluting source of energy," Energy, Elsevier, vol. 22(1), pages 17-19.
    20. Ngo, Son Ich & Nguyen, Thanh D.B. & Lim, Young-Il & Song, Byung-Ho & Lee, Uen-Do & Choi, Young-Tai & Song, Jae-Hun, 2011. "Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model," Applied Energy, Elsevier, vol. 88(12), pages 5208-5220.
    21. Marcin Siedlecki & Wiebren De Jong & Adrian H.M. Verkooijen, 2011. "Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review," Energies, MDPI, vol. 4(3), pages 1-46, March.
    22. Valero, Antonio & Usón, Sergio, 2006. "Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant," Energy, Elsevier, vol. 31(10), pages 1643-1655.
    23. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.
    24. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    25. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    26. Baer, Paul & Brown, Marilyn A. & Kim, Gyungwon, 2015. "The job generation impacts of expanding industrial cogeneration," Ecological Economics, Elsevier, vol. 110(C), pages 141-153.
    27. Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
    28. Chen, Wei & Annamalai, Kalyan & Ansley, R. James & Mirik, Mustafa, 2012. "Updraft fixed bed gasification of mesquite and juniper wood samples," Energy, Elsevier, vol. 41(1), pages 454-461.
    29. Göransson, Kristina & Söderlind, Ulf & He, Jie & Zhang, Wennan, 2011. "Review of syngas production via biomass DFBGs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 482-492, January.
    30. Reinhard Rauch & Jitka Hrbek & Hermann Hofbauer, 2014. "Biomass gasification for synthesis gas production and applications of the syngas," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 343-362, July.
    31. Devi, Lopamudra & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G. & van Paasen, Sander V.B. & Bergman, Patrick C.A. & Kiel, Jacob H.A., 2005. "Catalytic decomposition of biomass tars: use of dolomite and untreated olivine," Renewable Energy, Elsevier, vol. 30(4), pages 565-587.
    32. Kathrin Sunde & Andreas Brekke & Birger Solberg, 2011. "Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review," Energies, MDPI, vol. 4(6), pages 1-33, May.
    33. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    34. Asadullah, Mohammad, 2014. "Barriers of commercial power generation using biomass gasification gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 201-215.
    35. Reyes Valle, C. & Villanueva Perales, A.L. & Vidal-Barrero, F. & Gómez-Barea, A., 2013. "Techno-economic assessment of biomass-to-ethanol by indirect fluidized bed gasification: Impact of reforming technologies and comparison with entrained flow gasification," Applied Energy, Elsevier, vol. 109(C), pages 254-266.
    36. Reijnders, L., 2006. "Conditions for the sustainability of biomass based fuel use," Energy Policy, Elsevier, vol. 34(7), pages 863-876, May.
    37. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    38. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    39. Ahmad, Anis Atikah & Zawawi, Norfadhila Abdullah & Kasim, Farizul Hafiz & Inayat, Abrar & Khasri, Azduwin, 2016. "Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1333-1347.
    40. Abbasi, Tasneem & Abbasi, S.A., 2011. "'Renewable' hydrogen: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3034-3040, August.
    41. Zhang, Zibin & Lohr, Luanne & Escalante, Cesar & Wetzstein, Michael, 2010. "Food versus fuel: What do prices tell us?," Energy Policy, Elsevier, vol. 38(1), pages 445-451, January.
    42. Saxena, R.C. & Seal, Diptendu & Kumar, Satinder & Goyal, H.B., 2008. "Thermo-chemical routes for hydrogen rich gas from biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1909-1927, September.
    43. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    44. Haro, Pedro & Johnsson, Filip & Thunman, Henrik, 2016. "Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment," Energy, Elsevier, vol. 101(C), pages 380-389.
    45. Molino, A. & Migliori, M. & Macrì, D. & Valerio, V. & Villone, A. & Nanna, F. & Iovane, P. & Marino, T., 2016. "Glucose gasification in super-critical water conditions for both syngas production and green chemicals with a continuous process," Renewable Energy, Elsevier, vol. 91(C), pages 451-455.
    46. Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
    47. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    3. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    4. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    6. Ud Din, Zia & Zainal, Z.A., 2017. "The fate of SOFC anodes under biomass producer gas contaminants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1050-1066.
    7. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    9. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    10. Monteiro, Eliseu & Ramos, Ana & Rouboa, Abel, 2024. "Fundamental designs of gasification plants for combined heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    11. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    12. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Ram, Mahendra & Mondal, Monoj Kumar, 2019. "Investigation on fuel gas production from pulp and paper waste water impregnated coconut husk in fluidized bed gasifier via humidified air and CO2 gasification," Energy, Elsevier, vol. 178(C), pages 522-529.
    14. Lui, Jade & Chen, Wei-Hsin & Tsang, Daniel C.W. & You, Siming, 2020. "A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    16. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    17. Carlos Vargas-Salgado & Elías Hurtado-Pérez & David Alfonso-Solar & Anders Malmquist, 2021. "Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    18. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    20. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:811-:d:139026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.