IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5867-d636835.html
   My bibliography  Save this article

Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller

Author

Listed:
  • Amil Daraz

    (Department of Electrical Engineering, FET, International Islamic University, Islamabad 44000, Pakistan)

  • Suheel Abdullah Malik

    (Department of Electrical Engineering, FET, International Islamic University, Islamabad 44000, Pakistan)

  • Athar Waseem

    (Department of Electrical Engineering, FET, International Islamic University, Islamabad 44000, Pakistan)

  • Ahmad Taher Azar

    (College of Computer & Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
    Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt)

  • Ihsan Ul Haq

    (Department of Electrical Engineering, FET, International Islamic University, Islamabad 44000, Pakistan)

  • Zahid Ullah

    (Department of Electrical Engineering, UMT Lahore, Sialkot Campus, Sialkot 51310, Pakistan)

  • Sheraz Aslam

    (Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol 3036, Cyprus)

Abstract

Automatic Generation Control (AGC) delivers a high quality electrical energy to energy consumers using efficient and intelligent control systems ensuring nominal operating frequency and organized tie-line power deviation. Subsequently, for the AGC analysis of a two-area interconnected hydro-gas-thermal-wind generating unit, a novel Fractional Order Integral-Tilt Derivative (FOI-TD) controller is proposed that is fine-tuned by a powerful meta-heuristic optimization technique referred as Improved-Fitness Dependent Optimizer (I-FDO) algorithm. For more realistic analysis, various constraints, such as Boiler Dynamics (BD), Time Delay (TD), Generation Rate Constraint (GRC), and Governor Dead Zone (GDZ) having non-linear features are incorporated in the specified system model. Moreover, a comparative analysis of I-FDO algorithm is performed with state-of-the-art approaches, such as FDO, teaching learning based optimization, and particle swarm optimization algorithms. Further, the proposed I-FDO tuned controller is compared with Fractional Order Tilt Integral Derivative (FOTID), PID, and Integral-Tilt Derivative (I-TD) controllers. The performance analysis demonstrates that proposed FOI-TD controller provides better performance and show strong robustness by changing system parameters and load condition in the range of  ± 50%, compared to other controllers.

Suggested Citation

  • Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5867-:d:636835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amil Daraz & Suheel Abdullah Malik & Ihsan Ul Haq & Khan Bahadar Khan & Ghulam Fareed Laghari & Farhan Zafar, 2020. "Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    2. Yedluri Anil Kumar & Hee-Je Kim, 2018. "Effect of Time on a Hierarchical Corn Skeleton-Like Composite of CoO@ZnO as Capacitive Electrode Material for High Specific Performance Supercapacitors," Energies, MDPI, vol. 11(12), pages 1-16, November.
    3. Anil Kumar Yedluri & Eswar Reddy Araveeti & Hee-Je Kim, 2019. "Facilely Synthesized NiCo 2 O 4 /NiCo 2 O 4 Nanofile Arrays Supported on Nickel Foam by a Hydrothermal Method and Their Excellent Performance for High-Rate Supercapacitance," Energies, MDPI, vol. 12(7), pages 1-11, April.
    4. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    5. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    6. Arya, Yogendra, 2019. "Impact of hydrogen aqua electrolyzer-fuel cell units on automatic generation control of power systems with a new optimal fuzzy TIDF-II controller," Renewable Energy, Elsevier, vol. 139(C), pages 468-482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaleem Ullah & Abdul Basit & Zahid Ullah & Rafiq Asghar & Sheraz Aslam & Ayman Yafoz, 2022. "Line Overload Alleviations in Wind Energy Integrated Power Systems Using Automatic Generation Control," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    2. Tayyab Ali & Suheel Abdullah Malik & Amil Daraz & Sheraz Aslam & Tamim Alkhalifah, 2022. "Dandelion Optimizer-Based Combined Automatic Voltage Regulation and Load Frequency Control in a Multi-Area, Multi-Source Interconnected Power System with Nonlinearities," Energies, MDPI, vol. 15(22), pages 1-34, November.
    3. Sabrina Mohand Saidi & Rabah Mellah & Arezki Fekik & Ahmad Taher Azar, 2022. "Real-Time Fuzzy-PID for Mobile Robot Control and Vision-Based Obstacle Avoidance," International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), IGI Global, vol. 13(1), pages 1-32, January.
    4. Tayyab Ali & Suheel Abdullah Malik & Amil Daraz & Muhammad Adeel & Sheraz Aslam & Herodotos Herodotou, 2023. "Load Frequency Control and Automatic Voltage Regulation in Four-Area Interconnected Power Systems Using a Gradient-Based Optimizer," Energies, MDPI, vol. 16(5), pages 1-27, February.
    5. Preeti Ranjan Sahu & Kumaraswamy Simhadri & Banaja Mohanty & Prakash Kumar Hota & Almoataz Y. Abdelaziz & Fahad Albalawi & Sherif S. M. Ghoneim & Mahmoud Elsisi, 2023. "Effective Load Frequency Control of Power System with Two-Degree Freedom Tilt-Integral-Derivative Based on Whale Optimization Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    2. Solomon Feleke & Balamurali Pydi & Raavi Satish & Degarege Anteneh & Kareem M. AboRas & Hossam Kotb & Mohammed Alharbi & Mohamed Abuagreb, 2023. "DE-Based Design of an Intelligent and Conventional Hybrid Control System with IPFC for AGC of Interconnected Power System," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    3. Meena, V.P. & Singh, V.P. & Guerrero, Josep M., 2024. "Investigation of reciprocal rank method for automatic generation control in two-area interconnected power system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 760-778.
    4. Sadeq D. Al-Majidi & Mohammed Kh. AL-Nussairi & Ali Jasim Mohammed & Adel Manaa Dakhil & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2022. "Design of a Load Frequency Controller Based on an Optimal Neural Network," Energies, MDPI, vol. 15(17), pages 1-28, August.
    5. Vladimir Parra-Elizondo & Ana Karina Cuentas-Gallegos & Beatriz Escobar-Morales & José Martín Baas-López & Jorge Alonso Uribe-Calderón & Daniella Esperanza Pacheco-Catalán, 2019. "Electrochemical Assessment of As-Deposited Co(OH) 2 by Electrochemical Synthesis: The Effect of Synthesis Temperature on Performance," Energies, MDPI, vol. 12(22), pages 1-17, November.
    6. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    7. Amil Daraz & Suheel Abdullah Malik & Ihsan Ul Haq & Khan Bahadar Khan & Ghulam Fareed Laghari & Farhan Zafar, 2020. "Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    8. Anil Kumar Yedluri & Eswar Reddy Araveeti & Hee-Je Kim, 2019. "Facilely Synthesized NiCo 2 O 4 /NiCo 2 O 4 Nanofile Arrays Supported on Nickel Foam by a Hydrothermal Method and Their Excellent Performance for High-Rate Supercapacitance," Energies, MDPI, vol. 12(7), pages 1-11, April.
    9. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    10. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    11. Kaleem Ullah & Abdul Basit & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez, 2022. "Automatic Generation Control in Modern Power Systems with Wind Power and Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-24, February.
    12. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    13. Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    14. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    15. Tayyab Ali & Suheel Abdullah Malik & Amil Daraz & Sheraz Aslam & Tamim Alkhalifah, 2022. "Dandelion Optimizer-Based Combined Automatic Voltage Regulation and Load Frequency Control in a Multi-Area, Multi-Source Interconnected Power System with Nonlinearities," Energies, MDPI, vol. 15(22), pages 1-34, November.
    16. Zhangyang Kang & Rufei Tan & Wu Zhou & Zhaolong Qin & Sen Liu, 2023. "Numerical Simulation and Optimization of a Phase-Change Energy Storage Box in a Modular Mobile Thermal Energy Supply System," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    17. Xin Zhang & Shi Liu & Yuqi Zhao & Haicun Yang & Jinchun Li, 2023. "Honeycomb-like Hierarchical Porous Carbon from Lignosulphonate by Enzymatic Hydrolysis and Alkali Activation for High-Performance Supercapacitors," Energies, MDPI, vol. 16(9), pages 1-17, April.
    18. Tayyab Ali & Suheel Abdullah Malik & Amil Daraz & Muhammad Adeel & Sheraz Aslam & Herodotos Herodotou, 2023. "Load Frequency Control and Automatic Voltage Regulation in Four-Area Interconnected Power Systems Using a Gradient-Based Optimizer," Energies, MDPI, vol. 16(5), pages 1-27, February.
    19. Solomon Feleke & Raavi Satish & Workagegn Tatek & Almoataz Y. Abdelaziz & Adel El-Shahat, 2022. "DE-Algorithm-Optimized Fuzzy-PID Controller for AGC of Integrated Multi Area Power System with HVDC Link," Energies, MDPI, vol. 15(17), pages 1-21, August.
    20. Mohammed Alharbi & Muhammad Ragab & Kareem M. AboRas & Hossam Kotb & Masoud Dashtdar & Mokhtar Shouran & Elmazeg Elgamli, 2023. "Innovative AVR-LFC Design for a Multi-Area Power System Using Hybrid Fractional-Order PI and PIDD 2 Controllers Based on Dandelion Optimizer," Mathematics, MDPI, vol. 11(6), pages 1-45, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5867-:d:636835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.