IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v139y2019icp468-482.html
   My bibliography  Save this article

Impact of hydrogen aqua electrolyzer-fuel cell units on automatic generation control of power systems with a new optimal fuzzy TIDF-II controller

Author

Listed:
  • Arya, Yogendra

Abstract

To circumvent equipment damage, load shedding and possible blackouts in electric power system, brisk acting energy storage units can excellently shrink the frequency and tie-line power oscillations generated due to small load perturbations. This paper investigates the impact of the energy storage hydrogen aqua electrolyzer (HAE)-fuel cell (FC) units on automatic generation control (AGC) of interconnected power systems. AGC plays the pivotal role in providing the electricity supply with good quality standards in the fast growing word of todays. For this, AGC entails highly proficient and intelligent control technique. Hence, a new fuzzy tilt integral derivative with filter plus double integral (FTIDF-II) controller is proposed for the first time in AGC field as an intelligent control technique to upgrade AGC performance of power systems with/without HAE-FC units. A recently appeared socio-politically influenced global search metaheuristic imperialist competitive algorithm (ICA) is used to tune the parameters of FTIDF-II controller. In FTIDF-II controller, asymmetrically membership functions (MFs) are employed, where MFs alongside zero provide fine-tuning and away from zero coarse-tuning. The efficacy of the control approach is critically analyzed on three 2-area power system models selected from the literature. The supremacy of FTIDF-II controller is established over FTIDF and existing PID/PIDF/TIDF/FPI/FPID/FPIDF/FPIDF-II structured controller optimized via various newly emerged optimization techniques. Investigation affirms that the dynamic performance of the systems with FTIDF-II controller improves further in the presence of HAE-FC units. Sensitivity analysis demonstrated that the proposed controller is robust and executes competently at variations in the system parameters and random load perturbations.

Suggested Citation

  • Arya, Yogendra, 2019. "Impact of hydrogen aqua electrolyzer-fuel cell units on automatic generation control of power systems with a new optimal fuzzy TIDF-II controller," Renewable Energy, Elsevier, vol. 139(C), pages 468-482.
  • Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:468-482
    DOI: 10.1016/j.renene.2019.02.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119301892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arya, Yogendra, 2019. "AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1+PI) controller," Renewable Energy, Elsevier, vol. 134(C), pages 796-806.
    2. Athari, M.H. & Ardehali, M.M., 2016. "Operational performance of energy storage as function of electricity prices for on-grid hybrid renewable energy system by optimized fuzzy logic controller," Renewable Energy, Elsevier, vol. 85(C), pages 890-902.
    3. Gharavi, H. & Ardehali, M.M. & Ghanbari-Tichi, S., 2015. "Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions," Renewable Energy, Elsevier, vol. 78(C), pages 427-437.
    4. Shankar, Ravi & Pradhan, S.R. & Chatterjee, Kalyan & Mandal, Rajasi, 2017. "A comprehensive state of the art literature survey on LFC mechanism for power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1185-1207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    2. Gi-Ho Lee & Young-Jin Kim, 2022. "Frequency Regulation of an Islanded Microgrid Using Hydrogen Energy Storage Systems: A Data-Driven Control Approach," Energies, MDPI, vol. 15(23), pages 1-13, November.
    3. Xueqin Lü, & Wu, Yinbo & Lian, Jie & Zhang, Yangyang, 2021. "Energy management and optimization of PEMFC/battery mobile robot based on hybrid rule strategy and AMPSO," Renewable Energy, Elsevier, vol. 171(C), pages 881-901.
    4. Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorestani, A. & Ardehali, M.M., 2018. "Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm," Renewable Energy, Elsevier, vol. 119(C), pages 490-503.
    2. Wang, Zhengchao & Perera, A.T.D., 2020. "Integrated platform to design robust energy internet," Applied Energy, Elsevier, vol. 269(C).
    3. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    4. Daogang Peng & Yue Xu & Huirong Zhao, 2019. "Research on Intelligent Predictive AGC of a Thermal Power Unit Based on Control Performance Standards," Energies, MDPI, vol. 12(21), pages 1-23, October.
    5. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    6. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    7. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    8. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    9. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    10. Tai Li & Yanbo Wang & Sunan Sun & Huimin Qian & Leqiu Wang & Lei Wang & Yanxia Shen & Zhicheng Ji, 2023. "Fuzzy Active Disturbance Rejection-Based Virtual Inertia Control Strategy for Wind Farms," Energies, MDPI, vol. 16(10), pages 1-16, May.
    11. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    12. Yadav, Subhash & Kumar, Pradeep & Kumar, Ashwani, 2024. "Techno-economic assessment of hybrid renewable energy system with multi energy storage system using HOMER," Energy, Elsevier, vol. 297(C).
    13. Francisco J. Vivas Fernández & Francisca Segura Manzano & José Manuel Andújar Márquez & Antonio J. Calderón Godoy, 2020. "Extended Model Predictive Controller to Develop Energy Management Systems in Renewable Source-Based Smart Microgrids with Hydrogen as Backup. Theoretical Foundation and Case Study," Sustainability, MDPI, vol. 12(21), pages 1-28, October.
    14. Yu, Shiwei & Zhou, Shuangshuang & Zheng, Shuhong & Li, Zhenxi & Liu, Lancui, 2019. "Developing an optimal renewable electricity generation mix for China using a fuzzy multi-objective approach," Renewable Energy, Elsevier, vol. 139(C), pages 1086-1098.
    15. Zahedi, R. & Ardehali, M.M., 2020. "Power management for storage mechanisms including battery, supercapacitor, and hydrogen of autonomous hybrid green power system utilizing multiple optimally-designed fuzzy logic controllers," Energy, Elsevier, vol. 204(C).
    16. Leonardo Peña-Pupo & Herminio Martínez-García & Encarna García-Vílchez & Ernesto Y. Fariñas-Wong & José R. Núñez-Álvarez, 2021. "Combined Method of Flow-Reduced Dump Load for Frequency Control of an Autonomous Micro-Hydropower in AC Microgrids," Energies, MDPI, vol. 14(23), pages 1-17, December.
    17. Ahmed. H. A. Elkasem & Salah Kamel & Mohamed H. Hassan & Mohamed Khamies & Emad M. Ahmed, 2022. "An Eagle Strategy Arithmetic Optimization Algorithm for Frequency Stability Enhancement Considering High Renewable Power Penetration and Time-Varying Load," Mathematics, MDPI, vol. 10(6), pages 1-38, March.
    18. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid," Applied Energy, Elsevier, vol. 190(C), pages 232-248.
    20. Saha, Arindita & Bhaskar, Mahajan Sagar & Almakhles, Dhafer J. & Elmorshedy, Mahmoud F., 2024. "Employment of renewable based sources in amalgamated frequency-voltage control restructured system with TSA trained IPD(1+I) controller," Renewable Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:139:y:2019:i:c:p:468-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.