IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6223-d898670.html
   My bibliography  Save this article

Design of a Load Frequency Controller Based on an Optimal Neural Network

Author

Listed:
  • Sadeq D. Al-Majidi

    (Department of Electrical Engineering, College of Engineering, University of Misan, Amarah 62001, Iraq)

  • Mohammed Kh. AL-Nussairi

    (Department of Electrical Engineering, College of Engineering, University of Misan, Amarah 62001, Iraq)

  • Ali Jasim Mohammed

    (Directorate General of Education in Amarah, Ministry of Education, Amarah 62001, Iraq)

  • Adel Manaa Dakhil

    (Department of Electrical Engineering, College of Engineering, University of Misan, Amarah 62001, Iraq)

  • Maysam F. Abbod

    (Department of Electronic and Computer Engineering, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK)

  • Hamed S. Al-Raweshidy

    (Department of Electronic and Computer Engineering, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK)

Abstract

A load frequency controller (LFC) is a crucial part in the distribution of a power system network (PSN) to restore its frequency response when the load demand is changed rapidly. In this paper, an artificial neural network (ANN) technique is utilised to design the optimal LFC. However, the training of the optimal ANN model for a multi-area PSN is a major challenge due to its variations in the load demand. To address this challenge, a particle swarm optimization is used to distribute the nodes of a hidden layer and to optimise the initial neurons of the ANN model, resulting in obtaining the lower mean square error of the ANN model. Hence, the mean square error and the number of epochs of the ANN model are minimised to about 9.3886 × 10 −8 and 25, respectively. To assess this proposal, a MATLAB/Simulink model of the PSN is developed for the single-area PSN and multi-area PSN. The results show that the LFC based on the optimal ANN is more effective for adjusting the frequency level and improves the power delivery of the multi-area PSN comparison with the single-area PSN. Moreover, it is the most reliable for avoiding the fault condition whilst achieving the lowest time multiplied absolute error about 3.45 s when compared with the conventional ANN and PID methods.

Suggested Citation

  • Sadeq D. Al-Majidi & Mohammed Kh. AL-Nussairi & Ali Jasim Mohammed & Adel Manaa Dakhil & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2022. "Design of a Load Frequency Controller Based on an Optimal Neural Network," Energies, MDPI, vol. 15(17), pages 1-28, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6223-:d:898670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenxi Feng & Yanshan Xie & Fei Luo & Xianyong Zhang & Wenyong Duan, 2021. "Enhanced Stability Criteria of Network-Based Load Frequency Control of Power Systems with Time-Varying Delays," Energies, MDPI, vol. 14(18), pages 1-22, September.
    2. Pappachen, Abhijith & Peer Fathima, A., 2017. "Critical research areas on load frequency control issues in a deregulated power system: A state-of-the-art-of-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 163-177.
    3. Ting-Hsuan Chien & Yu-Chuan Huang & Yuan-Yih Hsu, 2020. "Neural Network-Based Supplementary Frequency Controller for a DFIG Wind Farm," Energies, MDPI, vol. 13(20), pages 1-15, October.
    4. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    5. Bi-Ying Chen & Xing-Chen Shangguan & Li Jin & Dan-Yun Li, 2020. "An Improved Stability Criterion for Load Frequency Control of Power Systems with Time-Varying Delays," Energies, MDPI, vol. 13(8), pages 1-14, April.
    6. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    7. Minghui Yang & Chunsheng Wang & Yukun Hu & Zijian Liu & Caixin Yan & Shuhang He, 2020. "Load Frequency Control of Photovoltaic Generation-Integrated Multi-Area Interconnected Power Systems Based on Double Equivalent-Input-Disturbance Controllers," Energies, MDPI, vol. 13(22), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saqib Yousuf & Viqar Yousuf & Neeraj Gupta & Talal Alharbi & Omar Alrumayh, 2023. "Enhanced Control Designs to Abate Frequency Oscillations in Compensated Power System," Energies, MDPI, vol. 16(5), pages 1-20, February.
    2. Wadi, Mohammed & Shobole, Abdulfetah & Elmasry, Wisam & Kucuk, Ismail, 2024. "Load frequency control in smart grids: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Hubert Szczepaniuk & Edyta Karolina Szczepaniuk, 2022. "Applications of Artificial Intelligence Algorithms in the Energy Sector," Energies, MDPI, vol. 16(1), pages 1-24, December.
    4. Sadeq D. Al-Majidi & Hisham Dawood Salman Altai & Mohammed H. Lazim & Mohammed Kh. Al-Nussairi & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2023. "Bacterial Foraging Algorithm for a Neural Network Learning Improvement in an Automatic Generation Controller," Energies, MDPI, vol. 16(6), pages 1-19, March.
    5. Wei Fan & Zhijian Hu & Veerapandiyan Veerasamy, 2022. "PSO-Based Model Predictive Control for Load Frequency Regulation with Wind Turbines," Energies, MDPI, vol. 15(21), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeq D. Al-Majidi & Hisham Dawood Salman Altai & Mohammed H. Lazim & Mohammed Kh. Al-Nussairi & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2023. "Bacterial Foraging Algorithm for a Neural Network Learning Improvement in an Automatic Generation Controller," Energies, MDPI, vol. 16(6), pages 1-19, March.
    2. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    3. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    4. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    5. Solomon Feleke & Balamurali Pydi & Raavi Satish & Degarege Anteneh & Kareem M. AboRas & Hossam Kotb & Mohammed Alharbi & Mohamed Abuagreb, 2023. "DE-Based Design of an Intelligent and Conventional Hybrid Control System with IPFC for AGC of Interconnected Power System," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    6. Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.
    7. Hossam Hassan Ali & Ahmed Fathy & Abdullah M. Al-Shaalan & Ahmed M. Kassem & Hassan M. H. Farh & Abdullrahman A. Al-Shamma’a & Hossam A. Gabbar, 2021. "A Novel Sooty Terns Algorithm for Deregulated MPC-LFC Installed in Multi-Interconnected System with Renewable Energy Plants," Energies, MDPI, vol. 14(17), pages 1-27, August.
    8. Wadi, Mohammed & Shobole, Abdulfetah & Elmasry, Wisam & Kucuk, Ismail, 2024. "Load frequency control in smart grids: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Debanjan, Mukherjee & Karuna, Kalita, 2022. "An Overview of Renewable Energy Scenario in India and its Impact on Grid Inertia and Frequency Response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Amil Daraz & Suheel Abdullah Malik & Ihsan Ul Haq & Khan Bahadar Khan & Ghulam Fareed Laghari & Farhan Zafar, 2020. "Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    11. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    12. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    13. Kaleem Ullah & Abdul Basit & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez, 2022. "Automatic Generation Control in Modern Power Systems with Wind Power and Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-24, February.
    14. Anh-Tuan Tran & Bui Le Ngoc Minh & Van Van Huynh & Phong Thanh Tran & Emmanuel Nduka Amaefule & Van-Duc Phan & Tam Minh Nguyen, 2021. "Load Frequency Regulator in Interconnected Power System Using Second-Order Sliding Mode Control Combined with State Estimator," Energies, MDPI, vol. 14(4), pages 1-17, February.
    15. Dillip Kumar Mishra & Daria Złotecka & Li Li, 2022. "Significance of SMES Devices for Power System Frequency Regulation Scheme considering Distributed Energy Resources in a Deregulated Environment," Energies, MDPI, vol. 15(5), pages 1-32, February.
    16. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    17. Solomon Feleke & Raavi Satish & Workagegn Tatek & Almoataz Y. Abdelaziz & Adel El-Shahat, 2022. "DE-Algorithm-Optimized Fuzzy-PID Controller for AGC of Integrated Multi Area Power System with HVDC Link," Energies, MDPI, vol. 15(17), pages 1-21, August.
    18. Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.
    19. Mohammed Alharbi & Muhammad Ragab & Kareem M. AboRas & Hossam Kotb & Masoud Dashtdar & Mokhtar Shouran & Elmazeg Elgamli, 2023. "Innovative AVR-LFC Design for a Multi-Area Power System Using Hybrid Fractional-Order PI and PIDD 2 Controllers Based on Dandelion Optimizer," Mathematics, MDPI, vol. 11(6), pages 1-45, March.
    20. Danny Ochoa & Sergio Martinez, 2021. "Analytical Approach to Understanding the Effects of Implementing Fast-Frequency Response by Wind Turbines on the Short-Term Operation of Power Systems," Energies, MDPI, vol. 14(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6223-:d:898670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.