IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4246-d284641.html
   My bibliography  Save this article

Electrochemical Assessment of As-Deposited Co(OH) 2 by Electrochemical Synthesis: The Effect of Synthesis Temperature on Performance

Author

Listed:
  • Vladimir Parra-Elizondo

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, A.C. Carretera Sierra Papacal-Chuburná Puerto Km 5, Sierra Papacal, 97302 Mérida, Yucatán, Mexico)

  • Ana Karina Cuentas-Gallegos

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de Mexico, Priv. Xochicalco S/N Temixco, 62580 Morelos, Mexico)

  • Beatriz Escobar-Morales

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, A.C. Carretera Sierra Papacal-Chuburná Puerto Km 5, Sierra Papacal, 97302 Mérida, Yucatán, Mexico)

  • José Martín Baas-López

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, A.C. Carretera Sierra Papacal-Chuburná Puerto Km 5, Sierra Papacal, 97302 Mérida, Yucatán, Mexico)

  • Jorge Alonso Uribe-Calderón

    (Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130 x 32 y 34 Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico)

  • Daniella Esperanza Pacheco-Catalán

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, A.C. Carretera Sierra Papacal-Chuburná Puerto Km 5, Sierra Papacal, 97302 Mérida, Yucatán, Mexico)

Abstract

In this paper, the influence of an electrolytic temperature bath was used in the electrodeposition process on the size, color, and shape of the as-deposited Co(OH) 2 , and the electrochemical performance was investigated. Three different temperatures of 25, 60, and 95 °C were evaluated for the electrodeposition of Co(OH) 2 on stainless steel plates (SSP). The electrochemical performance of the as-deposited electrodes (SSP) was measured in a symmetric electrochemical cell (EC) arrangement. XRD, SEM, and N 2 physisorption analyses were carried out to evaluate the structure and morphological composition, along with the textural properties. Results showed that the hexagonal platelet micro-clusters of Co(OH) 2 are formed in a mixed composition of both α-Co(OH) 2 and β-Co(OH) 2 phases, with the α-Co(OH) 2 phase being the major phase formed in the electrodeposition process at temperatures below 95 °C, as suggested by the XRD analysis. Electrochemical cell performances were evaluated by galvanostatic cycling, results showed maximum areal capacity values of 1.97, 2.69, and 4.34 mA h cm −2 at a charge/discharge current of 6.25 mA cm −2 , for the as-deposited materials at 25, 60 and 95 °C, respectively. The specific power of the EC reached up to 19 kW kg −1 for the EC obtained material at 60 °C, with a specific energy of 2.8 W h kg −1 . The maximum specific energy was reached at a current density of 6.25 mA cm −2 , with a value of 10.79 W h kg −1 for the EC at 60 °C. These results offer some insight into how the morphology and composition of thin films can be tuned by the electrochemical synthesis temperature, yielding different electrochemical performances and areal capacity behaviors.

Suggested Citation

  • Vladimir Parra-Elizondo & Ana Karina Cuentas-Gallegos & Beatriz Escobar-Morales & José Martín Baas-López & Jorge Alonso Uribe-Calderón & Daniella Esperanza Pacheco-Catalán, 2019. "Electrochemical Assessment of As-Deposited Co(OH) 2 by Electrochemical Synthesis: The Effect of Synthesis Temperature on Performance," Energies, MDPI, vol. 12(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4246-:d:284641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anil Kumar Yedluri & Eswar Reddy Araveeti & Hee-Je Kim, 2019. "Facilely Synthesized NiCo 2 O 4 /NiCo 2 O 4 Nanofile Arrays Supported on Nickel Foam by a Hydrothermal Method and Their Excellent Performance for High-Rate Supercapacitance," Energies, MDPI, vol. 12(7), pages 1-11, April.
    2. Julius Partridge & Dina Ibrahim Abouelamaimen, 2019. "The Role of Supercapacitors in Regenerative Braking Systems," Energies, MDPI, vol. 12(14), pages 1-15, July.
    3. Yedluri Anil Kumar & Hee-Je Kim, 2018. "Effect of Time on a Hierarchical Corn Skeleton-Like Composite of CoO@ZnO as Capacitive Electrode Material for High Specific Performance Supercapacitors," Energies, MDPI, vol. 11(12), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.
    2. Anil Kumar Yedluri & Eswar Reddy Araveeti & Hee-Je Kim, 2019. "Facilely Synthesized NiCo 2 O 4 /NiCo 2 O 4 Nanofile Arrays Supported on Nickel Foam by a Hydrothermal Method and Their Excellent Performance for High-Rate Supercapacitance," Energies, MDPI, vol. 12(7), pages 1-11, April.
    3. Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    4. Zhangyang Kang & Rufei Tan & Wu Zhou & Zhaolong Qin & Sen Liu, 2023. "Numerical Simulation and Optimization of a Phase-Change Energy Storage Box in a Modular Mobile Thermal Energy Supply System," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    5. Xin Zhang & Shi Liu & Yuqi Zhao & Haicun Yang & Jinchun Li, 2023. "Honeycomb-like Hierarchical Porous Carbon from Lignosulphonate by Enzymatic Hydrolysis and Alkali Activation for High-Performance Supercapacitors," Energies, MDPI, vol. 16(9), pages 1-17, April.
    6. Zoltán Pusztai & Péter Kőrös & Ferenc Szauter & Ferenc Friedler, 2023. "Implementation of Optimized Regenerative Braking in Energy Efficient Driving Strategies," Energies, MDPI, vol. 16(6), pages 1-20, March.
    7. Anil Kumar Yedluri & Tarugu Anitha & Hee-Je Kim, 2019. "Fabrication of Hierarchical NiMoO 4 /NiMoO 4 Nanoflowers on Highly Conductive Flexible Nickel Foam Substrate as a Capacitive Electrode Material for Supercapacitors with Enhanced Electrochemical Perfor," Energies, MDPI, vol. 12(6), pages 1-11, March.
    8. Fernando Davalos Hernandez & Rahim Samanbakhsh & Federico Martin Ibanez & Fernando Martin, 2022. "Self-Balancing Supercapacitor Energy Storage System Based on a Modular Multilevel Converter," Energies, MDPI, vol. 15(1), pages 1-19, January.
    9. Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2020. "A Refined Loss Evaluation of a Three-Switch Double Input DC-DC Converter for Hybrid Vehicle Applications," Energies, MDPI, vol. 13(1), pages 1-13, January.
    10. Cong Zhang & Qun Gao & Ke Peng & Yan Jiang, 2023. "An EV Charging Guidance Strategy Based on the Hierarchical Comprehensive Evaluation Method," Energies, MDPI, vol. 16(7), pages 1-16, March.
    11. Ivan Radaš & Ivan Župan & Viktor Šunde & Željko Ban, 2021. "Route Profile Dependent Tram Regenerative Braking Algorithm with Reduced Impact on the Supply Network," Energies, MDPI, vol. 14(9), pages 1-22, April.
    12. Walid Ahmed Maher Ghoneim & Ahmed Alaa Aziz, 2021. "Sequential Capacitor-Based Closed-Loop Precharge Control during the Single-Phase MMC Start-Up Process," Energies, MDPI, vol. 14(16), pages 1-14, August.
    13. Dmitry Agafonov & Aleksandr Bobyl & Aleksandr Kamzin & Alexey Nashchekin & Evgeniy Ershenko & Arseniy Ushakov & Igor Kasatkin & Vladimir Levitskii & Mikhail Trenikhin & Evgeniy Terukov, 2023. "Phase-Homogeneous LiFePO 4 Powders with Crystallites Protected by Ferric-Graphite-Graphene Composite," Energies, MDPI, vol. 16(3), pages 1-28, February.
    14. Wei Chen & Na Sun & Zhicheng Ma & Wenfei Liu & Haiying Dong, 2023. "A Two-Layer Optimization Strategy for Battery Energy Storage Systems to Achieve Primary Frequency Regulation of Power Grid," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4246-:d:284641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.