IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2086-d1075316.html
   My bibliography  Save this article

Load Frequency Control and Automatic Voltage Regulation in Four-Area Interconnected Power Systems Using a Gradient-Based Optimizer

Author

Listed:
  • Tayyab Ali

    (Department of Electrical and Computer Engineering, International Islamic University, Islamabad 44000, Pakistan)

  • Suheel Abdullah Malik

    (Department of Electrical and Computer Engineering, International Islamic University, Islamabad 44000, Pakistan)

  • Amil Daraz

    (School of Information Science and Engineering, NingboTech University, Ningbo 315100, China)

  • Muhammad Adeel

    (Department of Electrical and Computer Engineering, International Islamic University, Islamabad 44000, Pakistan)

  • Sheraz Aslam

    (Department of Electrical Engineering and Computer Engineering and Informatics, Cyprus University of Technology, 3036 Limassol, Cyprus)

  • Herodotos Herodotou

    (Department of Electrical Engineering and Computer Engineering and Informatics, Cyprus University of Technology, 3036 Limassol, Cyprus)

Abstract

Existing interconnected power systems (IPSs) are being overloaded by the expansion of the industrial and residential sectors together with the incorporation of renewable energy sources, which cause serious fluctuations in frequency, voltage, and tie-line power. The automatic voltage regulation (AVR) and load frequency control (LFC) loops provide high quality power to all consumers with nominal frequency, voltage, and tie-line power deviation, ensuring the stability and security of IPS in these conditions. In this paper, a proportional integral derivative (PID) controller is investigated for the effective control of a four-area IPS. Each IPS area has five generating units including gas, thermal reheat, hydro, and two renewable energy sources, namely wind and solar photovoltaic plants. The PID controller was tuned by a meta-heuristic optimization algorithm known as a gradient-based optimizer (GBO). The integral of time multiplied by squared value of error (ITSE) was utilized as an error criterion for the evaluation of the fitness function. The voltage, frequency, and tie-line power responses of GBO-PID were evaluated and compared with integral–proportional derivative (GBO-I-PD), tilt integral derivative (GBO-TID), and integral–proportional (GBO-I-P) controllers with 5% step load perturbation (SLP) provided in each of the four areas. Comprehensive comparisons between GBO-PID and other control methodologies revealed that the proposed GBO-PID controller provides superior voltage, frequency, and tie-line power responses in each area. The reliability and efficacy of GBO-PID methodology were further validated with variations in the turbine time constant and speed regulation over a range of  ± 25%. It is evident from the outcomes of the sensitivity analysis that the proposed GBO-PID control methodology is very reliable and can successfully stabilize the deviations in terminal voltage, load frequency, and tie-line power with a shorter settling time in a four-area IPS.

Suggested Citation

  • Tayyab Ali & Suheel Abdullah Malik & Amil Daraz & Muhammad Adeel & Sheraz Aslam & Herodotos Herodotou, 2023. "Load Frequency Control and Automatic Voltage Regulation in Four-Area Interconnected Power Systems Using a Gradient-Based Optimizer," Energies, MDPI, vol. 16(5), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2086-:d:1075316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2086/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2086/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amil Daraz & Suheel Abdullah Malik & Ihsan Ul Haq & Khan Bahadar Khan & Ghulam Fareed Laghari & Farhan Zafar, 2020. "Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    2. Tayyab Ali & Suheel Abdullah Malik & Ibrahim A. Hameed & Amil Daraz & Hana Mujlid & Ahmad Taher Azar, 2022. "Load Frequency Control and Automatic Voltage Regulation in a Multi-Area Interconnected Power System Using Nature-Inspired Computation-Based Control Methodology," Sustainability, MDPI, vol. 14(19), pages 1-30, September.
    3. CH. Naga Sai Kalyan & B. Srikanth Goud & Ch. Rami Reddy & Mohit Bajaj & Naveen Kumar Sharma & Hassan Haes Alhelou & Pierluigi Siano & Salah Kamel, 2022. "Comparative Performance Assessment of Different Energy Storage Devices in Combined LFC and AVR Analysis of Multi-Area Power System," Energies, MDPI, vol. 15(2), pages 1-22, January.
    4. Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waqar Younis & Muhammad Zubair Yameen & Abu Tayab & Hafiz Ghulam Murtza Qamar & Ehab Ghith & Mehdi Tlija, 2024. "Enhancing Load Frequency Control of Interconnected Power System Using Hybrid PSO-AHA Optimizer," Energies, MDPI, vol. 17(16), pages 1-40, August.
    2. Weichao He & Yuemin Zheng & Jin Tao & Yujuan Zhou & Jiayan Wen & Qinglin Sun, 2023. "A Novel Fractional-Order Active Disturbance Rejection Load Frequency Control Based on An Improved Marine Predator Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    3. Ashraf K. Abdelaal & Mohamed A. El-Hameed, 2024. "Application of Robust Super Twisting to Load Frequency Control of a Two-Area System Comprising Renewable Energy Resources," Sustainability, MDPI, vol. 16(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    2. Tayyab Ali & Suheel Abdullah Malik & Amil Daraz & Sheraz Aslam & Tamim Alkhalifah, 2022. "Dandelion Optimizer-Based Combined Automatic Voltage Regulation and Load Frequency Control in a Multi-Area, Multi-Source Interconnected Power System with Nonlinearities," Energies, MDPI, vol. 15(22), pages 1-34, November.
    3. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    4. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    5. Preeti Ranjan Sahu & Kumaraswamy Simhadri & Banaja Mohanty & Prakash Kumar Hota & Almoataz Y. Abdelaziz & Fahad Albalawi & Sherif S. M. Ghoneim & Mahmoud Elsisi, 2023. "Effective Load Frequency Control of Power System with Two-Degree Freedom Tilt-Integral-Derivative Based on Whale Optimization Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    6. Shihao Xie & Yun Zeng & Jing Qian & Fanjie Yang & Youtao Li, 2023. "CPSOGSA Optimization Algorithm Driven Cascaded 3DOF-FOPID-FOPI Controller for Load Frequency Control of DFIG-Containing Interconnected Power System," Energies, MDPI, vol. 16(3), pages 1-18, January.
    7. Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "SMES-GCSC Coordination for Frequency and Voltage Regulation in a Multi-Area and Multi-Source Power System with Penetration of Electric Vehicles and Renewable Energy Sources," Energies, MDPI, vol. 16(1), pages 1-27, December.
    8. Kaleem Ullah & Abdul Basit & Zahid Ullah & Rafiq Asghar & Sheraz Aslam & Ayman Yafoz, 2022. "Line Overload Alleviations in Wind Energy Integrated Power Systems Using Automatic Generation Control," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    9. Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.
    10. Alaa M. Abdel-hamed & Almoataz Y. Abdelaziz & Adel El-Shahat, 2023. "Design of a 2DOF-PID Control Scheme for Frequency/Power Regulation in a Two-Area Power System Using Dragonfly Algorithm with Integral-Based Weighted Goal Objective," Energies, MDPI, vol. 16(1), pages 1-34, January.
    11. Mehmood, Khizer & Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Cheema, Khalid Mehmood & Raja, Muhammad Asif Zahoor & Shu, Chi-Min, 2023. "Novel knacks of chaotic maps with Archimedes optimization paradigm for nonlinear ARX model identification with key term separation," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    12. Wadi, Mohammed & Shobole, Abdulfetah & Elmasry, Wisam & Kucuk, Ismail, 2024. "Load frequency control in smart grids: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Sabrina Mohand Saidi & Rabah Mellah & Arezki Fekik & Ahmad Taher Azar, 2022. "Real-Time Fuzzy-PID for Mobile Robot Control and Vision-Based Obstacle Avoidance," International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), IGI Global, vol. 13(1), pages 1-32, January.
    14. Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "A Particle Swarm Optimization Technique Tuned TID Controller for Frequency and Voltage Regulation with Penetration of Electric Vehicles and Distributed Generations," Energies, MDPI, vol. 15(21), pages 1-32, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2086-:d:1075316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.