IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6174-d897395.html
   My bibliography  Save this article

DE-Algorithm-Optimized Fuzzy-PID Controller for AGC of Integrated Multi Area Power System with HVDC Link

Author

Listed:
  • Solomon Feleke

    (Department of Electrical and Computer Engineering, DebreBerhan University, DebreBerhan 445, Ethiopia)

  • Raavi Satish

    (Department of Electrical & Electronics Engineering, Anil Neerukonda Institute of Technology and Science (A), Visakhapatnam 531162, India)

  • Workagegn Tatek

    (Department of Electrical and Computer Engineering, DebreBerhan University, DebreBerhan 445, Ethiopia)

  • Almoataz Y. Abdelaziz

    (Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

  • Adel El-Shahat

    (Energy Technology Program, School of Engineering Technology, Purdue University, West Lafayette, IN 47906, USA)

Abstract

A power system’s nonlinearity and complexity increase from time to time due to increases of power demand. Therefore, properly designed power system controlsare required. Without these, system instability will cause equipment failures, and possibly even cascading events and blackouts. To cope with this, intelligent controllers using soft computing are necessary for real time operation. In this paper, the reheat type three-area thermal power system is considered, and the output scaling factors, gain parameters of fuzzy membership functions, and parameters of fuzzy-proportional integral derivative (FPID) controllers are optimized using a differential evolution (DE) optimization techniqueand integral time multiplied absolute error (ITAE) as objective functions. To improve the limitations of the controller and to enhance stability of the system, high voltage direct current (HVDC) technology is advantageous due to its quickresponse capabilities. In this paper, a HVDC is connected in parallel to the system, revealing that a FPID controller with a HVDC provides better and more accurate resultscompared to a system without a controller. The test results presented in this paper show the proposed controller’s suitability for managing random load changes.

Suggested Citation

  • Solomon Feleke & Raavi Satish & Workagegn Tatek & Almoataz Y. Abdelaziz & Adel El-Shahat, 2022. "DE-Algorithm-Optimized Fuzzy-PID Controller for AGC of Integrated Multi Area Power System with HVDC Link," Energies, MDPI, vol. 15(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6174-:d:897395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    2. Ramana Pilla & Ahmad Taher Azar & Tulasichandra Sekhar Gorripotu, 2019. "Impact of Flexible AC Transmission System Devices on Automatic Generation Control with a Metaheuristic Based Fuzzy PID Controller," Energies, MDPI, vol. 12(21), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Nocoń & Stefan Paszek, 2023. "A Comprehensive Review of Power System Stabilizers," Energies, MDPI, vol. 16(4), pages 1-32, February.
    2. Solomon Feleke & Balamurali Pydi & Raavi Satish & Degarege Anteneh & Kareem M. AboRas & Hossam Kotb & Mohammed Alharbi & Mohamed Abuagreb, 2023. "DE-Based Design of an Intelligent and Conventional Hybrid Control System with IPFC for AGC of Interconnected Power System," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    3. Solomon Feleke & Raavi Satish & Balamurali Pydi & Degarege Anteneh & Almoataz Y. Abdelaziz & Adel El-Shahat, 2023. "Damping of Frequency and Power System Oscillations with DFIG Wind Turbine and DE Optimization," Sustainability, MDPI, vol. 15(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solomon Feleke & Balamurali Pydi & Raavi Satish & Degarege Anteneh & Kareem M. AboRas & Hossam Kotb & Mohammed Alharbi & Mohamed Abuagreb, 2023. "DE-Based Design of an Intelligent and Conventional Hybrid Control System with IPFC for AGC of Interconnected Power System," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    2. Kaleem Ullah & Abdul Basit & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez, 2022. "Automatic Generation Control in Modern Power Systems with Wind Power and Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-24, February.
    3. Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "SMES-GCSC Coordination for Frequency and Voltage Regulation in a Multi-Area and Multi-Source Power System with Penetration of Electric Vehicles and Renewable Energy Sources," Energies, MDPI, vol. 16(1), pages 1-27, December.
    4. Kaleem Ullah & Zahid Ullah & Sheraz Aslam & Muhammad Salik Salam & Muhammad Asjad Salahuddin & Muhammad Farooq Umer & Mujtaba Humayon & Haris Shaheer, 2023. "Wind Farms and Flexible Loads Contribution in Automatic Generation Control: An Extensive Review and Simulation," Energies, MDPI, vol. 16(14), pages 1-34, July.
    5. Kaleem Ullah & Abdul Basit & Zahid Ullah & Rafiq Asghar & Sheraz Aslam & Ayman Yafoz, 2022. "Line Overload Alleviations in Wind Energy Integrated Power Systems Using Automatic Generation Control," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    6. Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.
    7. Sadeq D. Al-Majidi & Mohammed Kh. AL-Nussairi & Ali Jasim Mohammed & Adel Manaa Dakhil & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2022. "Design of a Load Frequency Controller Based on an Optimal Neural Network," Energies, MDPI, vol. 15(17), pages 1-28, August.
    8. Liyun Si & Wenping Cao & Xiangping Chen, 2020. "Active Disturbance Rejection Control of a Longitudinal Tunnel Ventilation System," Energies, MDPI, vol. 13(8), pages 1-16, April.
    9. José Calixto Lopes & Thales Sousa, 2022. "Transmission System Electromechanical Stability Analysis with High Penetration of Renewable Generation and Battery Energy Storage System Application," Energies, MDPI, vol. 15(6), pages 1-23, March.
    10. Herodotos Herodotou, 2021. "Introduction to the Special Issue on Data-Intensive Computing in Smart Microgrids," Energies, MDPI, vol. 14(9), pages 1-3, May.
    11. Ahmad Saeed & Ebrahim Shahzad & Adnan Umar Khan & Athar Waseem & Muhammad Iqbal & Kaleem Ullah & Sheraz Aslam, 2023. "Three-Pond Model with Fuzzy Inference System-Based Water Level Regulation Scheme for Run-of-River Hydropower Plant," Energies, MDPI, vol. 16(6), pages 1-29, March.
    12. Liqiang Jin & Ronglin Zhang & Binghao Tang & Hao Guo, 2020. "A Fuzzy-PID Scheme for Low Speed Control of a Vehicle While Going on a Downhill Road," Energies, MDPI, vol. 13(11), pages 1-18, June.
    13. Khairul Eahsun Fahim & Liyanage C. De Silva & Fayaz Hussain & Hayati Yassin, 2023. "A State-of-the-Art Review on Optimization Methods and Techniques for Economic Load Dispatch with Photovoltaic Systems: Progress, Challenges, and Recommendations," Sustainability, MDPI, vol. 15(15), pages 1-29, August.
    14. Alimoradi, Mahmoud & Azgomi, Hossein & Asghari, Ali, 2022. "Trees Social Relations Optimization Algorithm: A new Swarm-Based metaheuristic technique to solve continuous and discrete optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 629-664.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6174-:d:897395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.