IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5511-d1103054.html
   My bibliography  Save this article

Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure

Author

Listed:
  • Zhangyang Kang

    (School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Wu Zhou

    (School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Kaijie Qiu

    (School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Chaojie Wang

    (School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Zhaolong Qin

    (School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Bingyang Zhang

    (School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Qiongqiong Yao

    (State Grid Henan Marketing Service Center (Metrology Center), Zhengzhou 450051, China)

Abstract

The great development of energy storage technology and energy storage materials will make an important contribution to energy saving, reducing emissions and improving energy utilization efficiency. Mobile thermal energy storage (M-TES) technology finds a way to realize value for low-grade heat sources far beyond the demand side. In this paper, an indirect-contact M-TES container is studied using the computational fluid dynamics (CFD) method. By optimizing the heat exchange tube bundle layout and the installed fin structure of the shell and tube type M-TES container, a method of enhancing the charging and discharging efficiency is identified. The peripheral distribution mode of the heat exchanger tubes improves the efficiency of heat charging by 12.6% compared with the traditional uniform layout. The installation of the Y-shaped fins can improve the heat charging efficiency by 8.3%, better than straight fins. Compared with the horizontal installation of Y-shaped fins, the vertical installation of Y-shaped fins is preferred to improve the heat charging efficiency of the M-TES container.

Suggested Citation

  • Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5511-:d:1103054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niknam, Pouriya H & Sciacovelli, Adriano, 2023. "Hybrid PCM-steam thermal energy storage for industrial processes – Link between thermal phenomena and techno-economic performance through dynamic modelling," Applied Energy, Elsevier, vol. 331(C).
    2. Yedluri Anil Kumar & Hee-Je Kim, 2018. "Effect of Time on a Hierarchical Corn Skeleton-Like Composite of CoO@ZnO as Capacitive Electrode Material for High Specific Performance Supercapacitors," Energies, MDPI, vol. 11(12), pages 1-16, November.
    3. Nomura, Takahiro & Okinaka, Noriyuki & Akiyama, Tomohiro, 2010. "Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 1000-1006.
    4. Agyenim, Francis & Eames, Philip & Smyth, Mervyn, 2010. "Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array," Renewable Energy, Elsevier, vol. 35(1), pages 198-207.
    5. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    6. Yang, Xiaohu & Lu, Zhao & Bai, Qingsong & Zhang, Qunli & Jin, Liwen & Yan, Jinyue, 2017. "Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins," Applied Energy, Elsevier, vol. 202(C), pages 558-570.
    7. Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Zhang, Zhiyu & Gu, Jie & Niu, Yonghong, 2016. "Numerical study of the improvement of an indirect contact mobilized thermal energy storage container," Applied Energy, Elsevier, vol. 161(C), pages 476-486.
    8. Wang, Weilong & Guo, Shaopeng & Li, Hailong & Yan, Jinyue & Zhao, Jun & Li, Xun & Ding, Jing, 2014. "Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)," Applied Energy, Elsevier, vol. 119(C), pages 181-189.
    9. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    10. Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
    11. Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
    12. Li, Hailong & Wang, Weilong & Yan, Jinyue & Dahlquist, Erik, 2013. "Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply," Applied Energy, Elsevier, vol. 104(C), pages 178-186.
    13. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2015. "Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 729-736.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhangyang Kang & Rufei Tan & Wu Zhou & Zhaolong Qin & Sen Liu, 2023. "Numerical Simulation and Optimization of a Phase-Change Energy Storage Box in a Modular Mobile Thermal Energy Supply System," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    2. Zhanjun Guo & Sen Liu & Jiali Wang & Yanping Xu & Zhangyang Kang & Jinsheng Zhang, 2024. "Numerical Study of an Energy Storage Container with a Flat Plate Phase Change Unit Characterized by an S-Shaped Flow Channel," Sustainability, MDPI, vol. 16(17), pages 1-15, August.
    3. Zhanjun Guo & Wu Zhou & Sen Liu & Zhangyang Kang & Rufei Tan, 2023. "Effects of Geometric Parameters and Heat-Transfer Fluid Injection Direction on Enhanced Phase-Change Energy Storage in Vertical Shell-and-Tube System," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    4. Jiangwei Liu & Yuhe Xiao & Dandan Chen & Chong Ye & Changda Nie, 2024. "Melting and Solidification Characteristics of PCM in Oscillated Bundled-Tube Thermal Energy Storage System," Energies, MDPI, vol. 17(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Zhangyang Kang & Rufei Tan & Wu Zhou & Zhaolong Qin & Sen Liu, 2023. "Numerical Simulation and Optimization of a Phase-Change Energy Storage Box in a Modular Mobile Thermal Energy Supply System," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    3. Pathak, Saurabh & Jain, Komal & Kumar, Prashant & Wang, Xu & Pant, R.P., 2019. "Improved thermal performance of annular fin-shell tube storage system using magnetic fluid," Applied Energy, Elsevier, vol. 239(C), pages 1524-1535.
    4. Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
    5. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    6. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    7. Liu, Huan & Jing, Jianwei & Liu, Jianxin & Wang, Xiaodong, 2024. "Sugar alcohol-based phase change materials for thermal energy storage: Optimization design and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Yang, Xiaohu & Lu, Zhao & Bai, Qingsong & Zhang, Qunli & Jin, Liwen & Yan, Jinyue, 2017. "Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins," Applied Energy, Elsevier, vol. 202(C), pages 558-570.
    9. Zhanjun Guo & Wu Zhou & Sen Liu & Zhangyang Kang & Rufei Tan, 2023. "Effects of Geometric Parameters and Heat-Transfer Fluid Injection Direction on Enhanced Phase-Change Energy Storage in Vertical Shell-and-Tube System," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    10. Serge Nyallang Nyamsi & Ivan Tolj & Mykhaylo Lototskyy, 2019. "Metal Hydride Beds-Phase Change Materials: Dual Mode Thermal Energy Storage for Medium-High Temperature Industrial Waste Heat Recovery," Energies, MDPI, vol. 12(20), pages 1-27, October.
    11. Yang, Xiaohu & Guo, Junfei & Yang, Bo & Cheng, Haonan & Wei, Pan & He, Ya-Ling, 2020. "Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit," Applied Energy, Elsevier, vol. 279(C).
    12. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
    13. Gang Liu & Yuanji Li & Pan Wei & Tian Xiao & Xiangzhao Meng & Xiaohu Yang, 2022. "Thermo-Economic Assessments on a Heat Storage Tank Filled with Graded Metal Foam," Energies, MDPI, vol. 15(19), pages 1-16, September.
    14. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Kuta, Marta, 2023. "Mobilized thermal energy storage (M-TES) system design for cooperation with geothermal energy sources," Applied Energy, Elsevier, vol. 332(C).
    17. Huang, Yongping & Yao, Feng & Liu, Xiangdong, 2021. "Numerical study on the thermal enhancement of horizontal latent heat storage units with hierarchical fins," Renewable Energy, Elsevier, vol. 180(C), pages 383-397.
    18. Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Wang, Xiaotong, 2017. "Techno-economic assessment of mobilized thermal energy storage for distributed users: A case study in China," Applied Energy, Elsevier, vol. 194(C), pages 481-486.
    19. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Li, Xiao-Yan & Qu, Dong-Qi & Yang, Liu & Li, Kai-Di, 2017. "Experimental and numerical investigation of discharging process of direct contact thermal energy storage for use in conventional air-conditioning systems," Applied Energy, Elsevier, vol. 189(C), pages 211-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5511-:d:1103054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.