IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2174-d352979.html
   My bibliography  Save this article

Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)

Author

Listed:
  • Anna Wachowicz-Pyzik

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Anna Sowiżdżał

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Leszek Pająk

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Paweł Ziółkowski

    (Department of Energy and Industrial Apparatus, Faculty of Mechanical Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

  • Janusz Badur

    (Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Science, 80-231 Gdańsk, Poland)

Abstract

Numerical models of geothermal doublet allows us to reduce the high risk associated with the selection of the most effective location of a production well. Furthermore, modeling is a suitable tool to verify possible changes in operational geothermal parameters, which guarantees liveliness of the system. An appropriate selection of software as well as the methodology used to generate numerical models significantly affects the quality of the obtained results. In this paper, the authors discuss the influence of such parameters as grid density and distance between wells on the efficiency of geothermal heating plant. The last stage of the analysis was connected with estimation of geothermal power potential for a hypothetical geothermal doublet. Numerical simulations were carried out using the TOUGH2 code, which applies the finite-difference method. The research was conducted in the Szczecin Trough area (NW Poland), based on archival data from Choszczno IG-1 well. The results demonstrated that in the studied case of the Choszczno region, the changes in the distance of boreholes can have a visible influence on obtained results; however the grid density of the numerical model did not achieve a significant impact on it. The results show the significant importance of numerical modeling aimed at increasing the efficiency of a potential geothermal heating plant.

Suggested Citation

  • Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2174-:d:352979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Liao & Shicheng Zhang & Xinfang Ma & Yushi Zou, 2019. "Numerical Investigation of Fracture Compressibility and Uncertainty on Water-Loss and Production Performance in Tight Oil Reservoirs," Energies, MDPI, vol. 12(7), pages 1-20, March.
    2. Ruiyao Zhang & Jun Li & Gonghui Liu & Hongwei Yang & Hailong Jiang, 2019. "Analysis of Coupled Wellbore Temperature and Pressure Calculation Model and Influence Factors under Multi-Pressure System in Deep-Water Drilling," Energies, MDPI, vol. 12(18), pages 1-27, September.
    3. Willems, C.J.L. & M. Nick, H., 2019. "Towards optimisation of geothermal heat recovery: An example from the West Netherlands Basin," Applied Energy, Elsevier, vol. 247(C), pages 582-593.
    4. Thorsten Agemar & Josef Weber & Rüdiger Schulz, 2014. "Deep Geothermal Energy Production in Germany," Energies, MDPI, vol. 7(7), pages 1-20, July.
    5. Dongdong Liu & Yanyong Xiang, 2019. "A Semi-Analytical Method for Three-Dimensional Heat Transfer in Multi-Fracture Enhanced Geothermal Systems," Energies, MDPI, vol. 12(7), pages 1-11, March.
    6. Fridleifsson, Ingvar B., 2001. "Geothermal energy for the benefit of the people," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(3), pages 299-312, September.
    7. Leszek Pająk & Barbara Tomaszewska & Wiesław Bujakowski & Bogusław Bielec & Marta Dendys, 2020. "Review of the Low-Enthalpy Lower Cretaceous Geothermal Energy Resources in Poland as an Environmentally Friendly Source of Heat for Urban District Heating Systems," Energies, MDPI, vol. 13(6), pages 1-13, March.
    8. Bujakowski, Wiesław & Barbacki, Antoni & Miecznik, Maciej & Pająk, Leszek & Skrzypczak, Robert & Sowiżdżał, Anna, 2015. "Modelling geothermal and operating parameters of EGS installations in the lower triassic sedimentary formations of the central Poland area," Renewable Energy, Elsevier, vol. 80(C), pages 441-453.
    9. Chandrasiri Ekneligoda, Thushan & Min, Ki-Bok, 2014. "Determination of optimum parameters of doublet system in a horizontally fractured geothermal reservoir," Renewable Energy, Elsevier, vol. 65(C), pages 152-160.
    10. Guofeng Han & Yang Chen & Xiaoli Liu, 2019. "Investigation of Analysis Methods for Pulse Decay Tests Considering Gas Adsorption," Energies, MDPI, vol. 12(13), pages 1-23, July.
    11. Zeng, Yuchao & Tang, Liansheng & Wu, Nengyou & Cao, Yifei, 2017. "Analysis of influencing factors of production performance of enhanced geothermal system: A case study at Yangbajing geothermal field," Energy, Elsevier, vol. 127(C), pages 218-235.
    12. Bayer, Peter & Rybach, Ladislaus & Blum, Philipp & Brauchler, Ralf, 2013. "Review on life cycle environmental effects of geothermal power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 446-463.
    13. Pruess, Karsten & García, Julio & Kovscek, Tony & Oldenburg, Curt & Rutqvist, Jonny & Steefel, Carl & Xu, Tianfu, 2004. "Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2," Energy, Elsevier, vol. 29(9), pages 1431-1444.
    14. Sara Raos & Perica Ilak & Ivan Rajšl & Tena Bilić & Ghislain Trullenque, 2019. "Multiple-Criteria Decision-Making for Assessing the Enhanced Geothermal Systems," Energies, MDPI, vol. 12(9), pages 1-23, April.
    15. Claudia Naldi & Enzo Zanchini, 2019. "Full-Time-Scale Fluid-to-Ground Thermal Response of a Borefield with Uniform Fluid Temperature," Energies, MDPI, vol. 12(19), pages 1-18, September.
    16. Asai, Pranay & Panja, Palash & McLennan, John & Moore, Joseph, 2018. "Performance evaluation of enhanced geothermal system (EGS): Surrogate models, sensitivity study and ranking key parameters," Renewable Energy, Elsevier, vol. 122(C), pages 184-195.
    17. Chen, Mingjie & Tompson, Andrew F.B. & Mellors, Robert J. & Ramirez, Abelardo L. & Dyer, Kathleen M. & Yang, Xianjin & Wagoner, Jeffrey L., 2014. "An efficient Bayesian inversion of a geothermal prospect using a multivariate adaptive regression spline method," Applied Energy, Elsevier, vol. 136(C), pages 619-627.
    18. Xinbo Lei & Xiuhua Zheng & Chenyang Duan & Jianhong Ye & Kang Liu, 2019. "Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater," Energies, MDPI, vol. 12(19), pages 1-16, September.
    19. Chen, Mingjie & Tompson, Andrew F.B. & Mellors, Robert J. & Abdalla, Osman, 2015. "An efficient optimization of well placement and control for a geothermal prospect under geological uncertainty," Applied Energy, Elsevier, vol. 137(C), pages 352-363.
    20. Thorsten Agemar & Josef Weber & Inga S. Moeck, 2018. "Assessment and Public Reporting of Geothermal Resources in Germany: Review and Outlook," Energies, MDPI, vol. 11(2), pages 1-17, February.
    21. Paulina Krakowska & Paweł Madejski, 2019. "Research on Fluid Flow and Permeability in Low Porous Rock Sample Using Laboratory and Computational Techniques," Energies, MDPI, vol. 12(24), pages 1-17, December.
    22. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling," Renewable Energy, Elsevier, vol. 112(C), pages 151-165.
    23. Marina Iorio & Alberto Carotenuto & Alfonso Corniello & Simona Di Fraia & Nicola Massarotti & Alessandro Mauro & Renato Somma & Laura Vanoli, 2020. "Low Enthalpy Geothermal Systems in Structural Controlled Areas: A Sustainability Analysis of Geothermal Resource for Heating Plant (The Mondragone Case in Southern Appennines, Italy)," Energies, MDPI, vol. 13(5), pages 1-26, March.
    24. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    2. Anna Chmielowska & Anna Sowiżdżał & Barbara Tomaszewska, 2021. "Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    3. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    4. Antoni Barbacki & Maciej Miecznik & Barbara Tomaszewska & Robert Skrzypczak, 2020. "Assessment of the Lower Carboniferous-Devonian Aquifer as a Source of Geothermal Energy in the Silesian–Kraków Region (Poland)," Energies, MDPI, vol. 13(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    2. Mehrdad Massoudi, 2020. "Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications," Energies, MDPI, vol. 13(6), pages 1-4, March.
    3. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).
    4. Guillem Piris & Ignasi Herms & Albert Griera & Montse Colomer & Georgina Arnó & Enrique Gomez-Rivas, 2021. "3DHIP-Calculator—A New Tool to Stochastically Assess Deep Geothermal Potential Using the Heat-In-Place Method from Voxel-Based 3D Geological Models," Energies, MDPI, vol. 14(21), pages 1-21, November.
    5. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    6. Wang, Jiacheng & Zhao, Zhihong & Liu, Guihong & Xu, Haoran, 2022. "A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm," Energy, Elsevier, vol. 254(PC).
    7. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    8. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    9. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    10. Nakomcic-Smaragdakis, Branka & Dvornic, Tijana & Cepic, Zoran & Dragutinovic, Natasa, 2016. "Analysis and possible geothermal energy utilization in a municipality of Panonian Basin of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 940-951.
    11. Sanchez-Alfaro, Pablo & Sielfeld, Gerd & Campen, Bart Van & Dobson, Patrick & Fuentes, Víctor & Reed, Andy & Palma-Behnke, Rodrigo & Morata, Diego, 2015. "Geothermal barriers, policies and economics in Chile – Lessons for the Andes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1390-1401.
    12. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    13. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    14. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    15. Sowizdzal, Anna, 2018. "Geothermal energy resources in Poland – Overview of the current state of knowledge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4020-4027.
    16. Abbas, Tauqeer & Ahmed Bazmi, Aqeel & Waheed Bhutto, Abdul & Zahedi, Gholamreza, 2014. "Greener energy: Issues and challenges for Pakistan-geothermal energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 258-269.
    17. Lin, David T.W. & Hsieh, Jui Ching & Shih, Bo Yen, 2019. "The optimization of geothermal extraction based on supercritical CO2 porous heat transfer model," Renewable Energy, Elsevier, vol. 143(C), pages 1162-1171.
    18. Wei-Tao Wu & Nadine Aubry & James F. Antaki & Mark L. McKoy & Mehrdad Massoudi, 2017. "Heat Transfer in a Drilling Fluid with Geothermal Applications," Energies, MDPI, vol. 10(9), pages 1-18, September.
    19. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco & Bonciani, Roberto, 2020. "A rigorous simulation model of geothermal power plants for emission control," Applied Energy, Elsevier, vol. 263(C).
    20. Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2174-:d:352979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.