IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3533-d267339.html
   My bibliography  Save this article

Analysis of Coupled Wellbore Temperature and Pressure Calculation Model and Influence Factors under Multi-Pressure System in Deep-Water Drilling

Author

Listed:
  • Ruiyao Zhang

    (College of petroleum engineering, China University of Petroleum-Beijing, Beijing 102249, China)

  • Jun Li

    (College of petroleum engineering, China University of Petroleum-Beijing, Beijing 102249, China)

  • Gonghui Liu

    (College of petroleum engineering, China University of Petroleum-Beijing, Beijing 102249, China
    College of petroleum engineering, Beijing University of Technology, Beijing 100192, China)

  • Hongwei Yang

    (College of petroleum engineering, China University of Petroleum-Beijing, Beijing 102249, China)

  • Hailong Jiang

    (College of petroleum engineering, China University of Petroleum-Beijing, Beijing 102249, China)

Abstract

The purpose of this paper is to discuss the variation of wellbore temperature and bottom-hole pressure with key factors in the case of coupled temperature and pressure under multi-pressure system during deep-water drilling circulation. According to the law of energy conservation and momentum equation, the coupled temperature and pressure calculation model under multi-pressure system is developed by using the comprehensive convective heat transfer coefficient. The model is discretized and solved by finite difference method and Gauss Seidel iteration respectively. Then the calculation results of this paper are compared and verified with previous research models and field measured data. The results show that when the multi-pressure system is located in the middle formation, the temperature of the annulus corresponding to location of the system is the most affected, and the temperature of the other areas in annulus is hardly affected. However, when the multi-pressure system is located at the bottom hole, the annulus temperature is greatly affected from bottom hole to mudline. In addition, the thermo-physical parameters of the drilling fluid can be changed by overflow and leakage. When only overflow occurs, the annulus temperature increases the most, but the viscosity decreases the most. When only leakage occurs, the annulus temperature decreases the most and the viscosity increases the most. However, when the overflow rate is greater than the leakage rate, the mud density and bottom-hole pressure increase the most, and both increase the least when only leakage occurs. Meanwhile, bottom-hole pressure increases with the increase of pump rate but decreases with the increase of inlet temperature. The research results can provide theoretical guidance for safe drilling in complex formations such as multi-pressure systems.

Suggested Citation

  • Ruiyao Zhang & Jun Li & Gonghui Liu & Hongwei Yang & Hailong Jiang, 2019. "Analysis of Coupled Wellbore Temperature and Pressure Calculation Model and Influence Factors under Multi-Pressure System in Deep-Water Drilling," Energies, MDPI, vol. 12(18), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3533-:d:267339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Mou & Li, Xiaoxiao & Deng, Jianmin & Meng, Yingfeng & Li, Gao, 2015. "Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions," Energy, Elsevier, vol. 91(C), pages 1018-1029.
    2. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    3. Yang, Hongwei & Li, Jun & Liu, Gonghui & Wang, Chao & Li, Mengbo & Jiang, Hailong, 2019. "Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling," Energy, Elsevier, vol. 179(C), pages 138-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Hongwei & Li, Jun & Zhang, Hui & Jiang, Jiwei & Guo, Boyun & Gao, Reyu & Zhang, Geng, 2022. "Thermal behavior prediction and adaptation analysis of a reelwell drilling method for closed-loop geothermal system," Applied Energy, Elsevier, vol. 320(C).
    2. Mehrdad Massoudi, 2020. "Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications," Energies, MDPI, vol. 13(6), pages 1-4, March.
    3. Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zheng & Xiong, Youming & Pu, Hui & Sun, Zheng, 2021. "Effect of the variations of thermophysical properties of drilling fluids with temperature on wellbore temperature calculation during drilling," Energy, Elsevier, vol. 214(C).
    2. Yang, Hongwei & Li, Jun & Liu, Gonghui & Wang, Chao & Li, Mengbo & Jiang, Hailong, 2019. "Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling," Energy, Elsevier, vol. 179(C), pages 138-153.
    3. Abbas, Ahmed K. & Bashikh, Ali A. & Abbas, Hayder & Mohammed, Haider Q., 2019. "Intelligent decisions to stop or mitigate lost circulation based on machine learning," Energy, Elsevier, vol. 183(C), pages 1104-1113.
    4. Zhang, Nanlin & Chen, Zhangxin & Luo, Zhifeng & Liu, Pingli & Chen, Weiyu & Liu, Fushen, 2023. "Effect of the phase-transition fluid reaction heat on wellbore temperature in self-propping phase-transition fracturing technology," Energy, Elsevier, vol. 265(C).
    5. Yang, Hongwei & Li, Jun & Zhang, Hui & Jiang, Jiwei & Guo, Boyun & Zhang, Geng, 2022. "Numerical analysis of heat transfer rate and wellbore temperature distribution under different circulating modes of Reel-well drilling," Energy, Elsevier, vol. 254(PB).
    6. Zhang, Xishun & Shi, Junfeng & Zhao, Ruidong & Ma, Gaoqiang & Li, Zhongyang & Wang, Xiaofei & Zhang, Jinke, 2024. "Simulation of wellbore pipe flow in oil production engineering: Offshore concentric double-tube CO2-assisted superheated steam wellbore during SAGD process of heavy oil reservoirs," Energy, Elsevier, vol. 294(C).
    7. Zhang, Zheng & Wei, Yongqi & Xiong, Youming & Peng, Geng & Wang, Guorong & Lu, Jingsheng & Zhong, Lin & Wang, Jingpeng, 2022. "Influence of the location of drilling fluid loss on wellbore temperature distribution during drilling," Energy, Elsevier, vol. 244(PB).
    8. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    9. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    10. Yang, Hongwei & Li, Jun & Zhang, Hui & Jiang, Jiwei & Guo, Boyun & Gao, Reyu & Zhang, Geng, 2022. "Thermal behavior prediction and adaptation analysis of a reelwell drilling method for closed-loop geothermal system," Applied Energy, Elsevier, vol. 320(C).
    11. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).
    12. Yang, Xianyu & Cai, Jihua & Jiang, Guosheng & Xie, Jingyu & Shi, Yanping & Chen, Shuya & Yue, Ye & Yu, Lang & He, Yichao & Xie, Kunzhi, 2020. "Nanoparticle plugging prediction of shale pores: A numerical and experimental study," Energy, Elsevier, vol. 208(C).
    13. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    14. Guo, Yide & Li, Xibing & Huang, Linqi, 2023. "Experimental investigation on the sudden cooling effect of oil-based drilling fluid on the dynamic compressive behavior of deep shale reservoirs," Energy, Elsevier, vol. 282(C).
    15. Yang, Xianyu & Cai, Jihua & Jiang, Guosheng & Zhang, Yungen & Shi, Yanping & Chen, Shuya & Yue, Ye & Wei, Zhaohui & Yin, Dezhan & Li, Hua, 2022. "Modeling of nanoparticle fluid microscopic plugging effect on horizontal and vertical wellbore of shale gas," Energy, Elsevier, vol. 239(PB).
    16. Mao, Liangjie & Wei, Changjiang & Zeng, Song & Cai, Mingjie, 2023. "Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system," Energy, Elsevier, vol. 269(C).
    17. Zhang, Zhi & Sun, Baojiang & Wang, Zhiyuan & Mu, Xiaojie & Sun, Dalin, 2023. "Multiphase throttling characteristic analysis and structure optimization design of throttling valve in managed pressure drilling," Energy, Elsevier, vol. 262(PB).
    18. Bo Feng & Jin Li & Zaoyuan Li & Xuning Wu & Jian Liu & Sheng Huang & Jinfei Sun, 2023. "Enhancing Environmental Protection in Oil and Gas Wells through Improved Prediction Method of Cement Slurry Temperature," Energies, MDPI, vol. 16(13), pages 1-17, June.
    19. Yang, Mou & Luo, Dayu & Chen, Yuanhang & Li, Gao & Tang, Daqian & Meng, Yingfeng, 2019. "Establishing a practical method to accurately determine and manage wellbore thermal behavior in high-temperature drilling," Applied Energy, Elsevier, vol. 238(C), pages 1471-1483.
    20. Wang, Yi & Zhang, Liang & Cui, Guodong & Kang, Jun & Ren, Shaoran, 2019. "Geothermal development and power generation by circulating water and isobutane via a closed-loop horizontal well from hot dry rocks," Renewable Energy, Elsevier, vol. 136(C), pages 909-922.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3533-:d:267339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.