IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp1390-1401.html
   My bibliography  Save this article

Geothermal barriers, policies and economics in Chile – Lessons for the Andes

Author

Listed:
  • Sanchez-Alfaro, Pablo
  • Sielfeld, Gerd
  • Campen, Bart Van
  • Dobson, Patrick
  • Fuentes, Víctor
  • Reed, Andy
  • Palma-Behnke, Rodrigo
  • Morata, Diego

Abstract

The Andes is the largest undeveloped geothermal region in the world. The Chilean case is the most puzzling because the country is largely dependent on imported fuels causing, among other issues, high energy prices and energy dependency. But even though it has large quantities of geothermal resources which have been explored since the 1920s, no geothermal power plant has been constructed yet. The barriers for geothermal development in Chile have not been studied in detail and limited information is available about the real economic feasibility of geothermal power generation and whether effective incentives are needed for its development. In this study we present an integrated analysis of geoscientific, economic, historical and regulatory aspects of geothermal development in Chile based on the compilation of new and previously published data. Through a survey of key participants from government institutions, industry and academia we identified the main perceived advantages, barriers, and efficient incentives. The absence of clear medium-to-long term energy policies and a lack of government incentives for companies to overcome financial risk are perceived as the main barriers. Additionally, we calculated the estimated average Levelized Costs of Energy (LCoE) of geothermal electricity generation using different scenarios to illustrate the potential impact of possible government policies. At present conditions and without incentives we estimated a base case geothermal LCoE in Chile which would be “near competitive” compared to the average contract prices. Further analysis would be needed to estimate the effect of different policy incentives more rigorously. Finally, we propose some guidelines for geothermal stakeholders to encourage geothermal power development; these might prove useful to other Andean and developing countries as well.

Suggested Citation

  • Sanchez-Alfaro, Pablo & Sielfeld, Gerd & Campen, Bart Van & Dobson, Patrick & Fuentes, Víctor & Reed, Andy & Palma-Behnke, Rodrigo & Morata, Diego, 2015. "Geothermal barriers, policies and economics in Chile – Lessons for the Andes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1390-1401.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1390-1401
    DOI: 10.1016/j.rser.2015.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115006486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fridleifsson, Ingvar B., 2001. "Geothermal energy for the benefit of the people," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(3), pages 299-312, September.
    2. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    3. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    4. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    5. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
    2. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    3. Emodi, Nnaemeka Vincent & Wade, Belinda & Rekker, Saphira & Greig, Chris, 2022. "A systematic review of barriers to greenfield investment in decarbonisation solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Solano-Olivares, K. & Santoyo, E. & Santoyo-Castelazo, E., 2024. "Integrated sustainability assessment framework for geothermal energy technologies: A literature review and a new proposal of sustainability indicators for Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas, Tauqeer & Ahmed Bazmi, Aqeel & Waheed Bhutto, Abdul & Zahedi, Gholamreza, 2014. "Greener energy: Issues and challenges for Pakistan-geothermal energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 258-269.
    2. Nakomcic-Smaragdakis, Branka & Dvornic, Tijana & Cepic, Zoran & Dragutinovic, Natasa, 2016. "Analysis and possible geothermal energy utilization in a municipality of Panonian Basin of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 940-951.
    3. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    5. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    6. Sowizdzal, Anna, 2018. "Geothermal energy resources in Poland – Overview of the current state of knowledge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4020-4027.
    7. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    8. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    9. Etemoglu, A.B. & Can, M., 2007. "Classification of geothermal resources in Turkey by exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1596-1606, September.
    10. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    11. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    12. Nosrat, Amir H. & Swan, Lukas G. & Pearce, Joshua M., 2013. "Improved performance of hybrid photovoltaic-trigeneration systems over photovoltaic-cogen systems including effects of battery storage," Energy, Elsevier, vol. 49(C), pages 366-374.
    13. Kubota, Hiromi & Hondo, Hiroki & Hienuki, Shunichi & Kaieda, Hideshi, 2013. "Determining barriers to developing geothermal power generation in Japan: Societal acceptance by stakeholders involved in hot springs," Energy Policy, Elsevier, vol. 61(C), pages 1079-1087.
    14. Kose, Ramazan, 2007. "Geothermal energy potential for power generation in Turkey: A case study in Simav, Kutahya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 497-511, April.
    15. Köse, Ramazan, 2005. "Research on the generation of electricity from the geothermal resources in Simav region, Turkey," Renewable Energy, Elsevier, vol. 30(1), pages 67-79.
    16. Blum, Philipp & Campillo, Gisela & Münch, Wolfram & Kölbel, Thomas, 2010. "CO2 savings of ground source heat pump systems – A regional analysis," Renewable Energy, Elsevier, vol. 35(1), pages 122-127.
    17. Younas, Umair & Khan, B. & Ali, S.M. & Arshad, C.M. & Farid, U. & Zeb, Kamran & Rehman, Fahad & Mehmood, Yasir & Vaccaro, A., 2016. "Pakistan geothermal renewable energy potential for electric power generation: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 398-413.
    18. Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.
    19. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    20. Epari Ritesh Patro & Teegala Srinivasa Kishore & Ali Torabi Haghighi, 2022. "Levelized Cost of Electricity Generation by Small Hydropower Projects under Clean Development Mechanism in India," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1390-1401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.