IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v263y2020ics0306261920300751.html
   My bibliography  Save this article

A rigorous simulation model of geothermal power plants for emission control

Author

Listed:
  • Vaccari, Marco
  • Pannocchia, Gabriele
  • Tognotti, Leonardo
  • Paci, Marco
  • Bonciani, Roberto

Abstract

Geothermal power plant (GTPP) operating conditions and associated emissions mainly depend on the endogenic fluid used to generate power, and the case of GTPPs located in Tuscany (Italy) is considered in this study. Since measuring on-line the quantity of emitted pollutants is a difficult task, a process simulation model featuring all unit operations of the GTTP is developed using UniSim Design® to forecast and control pollutant emissions. An accurate identification of the thermodynamic correlation parameters for the solubility of the considered pollutants (mercury and hydrogen sulfide) in water has been performed to match literature values. A data reconciliation procedure is used to match the simulation model outcome with real measurements of two (20 MWe and 40 MWe) GTTPs. Results are fully satisfactory as the mercury emission forecasted is always slightly above the measured data, evidencing the model is conservative, and hence reliable in ensuring satisfaction of emission limits established by law. For the 20 MWe plant, the simulated total mercury emissions are 3.31 g/h exceeding the measured ones by 27%, while for the 40 MWe plant, they are 1.38 g/h above the measured ones by 4%. In addition, for the 20MWe plant, pollutants emission and net power production are both considered in a performance analysis. The worst case scenario for power generation (18.7 MW) is in summer conditions, while for pollutant emission is in winter conditions with 5.22 g/h of total mercury and 20.46 kg/h of hydrogen sulfide. Finally, energetic performances result to be independent from the environmental measures adopted.

Suggested Citation

  • Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco & Bonciani, Roberto, 2020. "A rigorous simulation model of geothermal power plants for emission control," Applied Energy, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920300751
    DOI: 10.1016/j.apenergy.2020.114563
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920300751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    2. Willems, C.J.L. & M. Nick, H., 2019. "Towards optimisation of geothermal heat recovery: An example from the West Netherlands Basin," Applied Energy, Elsevier, vol. 247(C), pages 582-593.
    3. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    4. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    5. Unverdi, Murat & Cerci, Yunus, 2013. "Performance analysis of Germencik Geothermal Power Plant," Energy, Elsevier, vol. 52(C), pages 192-200.
    6. Zhu, Jialing & Hu, Kaiyong & Zhang, Wei & Lu, Xinli, 2017. "A study on generating a map for selection of optimum power generation cycles used for Enhanced Geothermal Systems," Energy, Elsevier, vol. 133(C), pages 502-512.
    7. Cerci, Y., 2003. "Performance evaluation of a single-flash geothermal power plant in Denizli, Turkey," Energy, Elsevier, vol. 28(1), pages 27-35.
    8. Bayer, Peter & Rybach, Ladislaus & Blum, Philipp & Brauchler, Ralf, 2013. "Review on life cycle environmental effects of geothermal power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 446-463.
    9. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    10. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    11. Pambudi, Nugroho Agung & Itoi, Ryuichi & Jalilinasrabady, Saeid & Jaelani, Khasani, 2015. "Performance improvement of a single-flash geothermal power plant in Dieng, Indonesia, upon conversion to a double-flash system using thermodynamic analysis," Renewable Energy, Elsevier, vol. 80(C), pages 424-431.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Tian & Li, Hang & Li, Xia & Sun, Qing-Han & Fang, Xuan-Yi & Ma, Huan & Chen, Qun, 2024. "A frequency domain dynamic simulation method for heat exchangers and thermal systems," Energy, Elsevier, vol. 286(C).
    2. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco, 2023. "Rigorous simulation of geothermal power plants to evaluate environmental performance of alternative configurations," Renewable Energy, Elsevier, vol. 207(C), pages 471-483.
    3. Tailu Li & Xuelong Li & Haiyang Gao & Xiang Gao & Nan Meng, 2022. "Thermodynamic Performance of Geothermal Energy Cascade Utilization for Combined Heating and Power Based on Organic Rankine Cycle and Vapor Compression Cycle," Energies, MDPI, vol. 15(19), pages 1-24, October.
    4. Nan Wang & Quan Yang & Cuixia Zhang, 2022. "Data-Driven Low-Carbon Control Method of Machining Process—Taking Axle as an Example," Sustainability, MDPI, vol. 14(21), pages 1-10, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    2. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    3. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari, 2017. "Energy, economic and environmental (3E) aspects of internal heat exchanger for ORC geothermal power plants," Energy, Elsevier, vol. 140(P1), pages 1096-1106.
    4. Lu, Xinli & Zhao, Yangyang & Zhu, Jialing & Zhang, Wei, 2018. "Optimization and applicability of compound power cycles for enhanced geothermal systems," Applied Energy, Elsevier, vol. 229(C), pages 128-141.
    5. Gökgedik, Harun & Yürüsoy, Muhammet & Keçebaş, Ali, 2016. "Improvement potential of a real geothermal power plant using advanced exergy analysis," Energy, Elsevier, vol. 112(C), pages 254-263.
    6. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Pambudi, Nugroho Agung, 2018. "Classification of geothermal resources in Indonesia by applying exergy concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 499-506.
    7. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    8. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    9. Grubert, E. & Zacarias, M., 2022. "Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Eyerer, Sebastian & Dawo, Fabian & Schifflechner, Christopher & Niederdränk, Anne & Spliethoff, Hartmut & Wieland, Christoph, 2022. "Experimental evaluation of an ORC-CHP architecture based on regenerative preheating for geothermal applications," Applied Energy, Elsevier, vol. 315(C).
    11. Schifflechner, Christopher & Dawo, Fabian & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2020. "Thermodynamic comparison of direct supercritical CO2 and indirect brine-ORC concepts for geothermal combined heat and power generation," Renewable Energy, Elsevier, vol. 161(C), pages 1292-1302.
    12. Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2013. "Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids," Energy, Elsevier, vol. 63(C), pages 123-132.
    13. Behzadi, Amirmohammad & Gholamian, Ehsan & Houshfar, Ehsan & Habibollahzade, Ali, 2018. "Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit," Energy, Elsevier, vol. 160(C), pages 1055-1068.
    14. Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.
    15. Altun, A.F. & Kilic, M., 2020. "Thermodynamic performance evaluation of a geothermal ORC power plant," Renewable Energy, Elsevier, vol. 148(C), pages 261-274.
    16. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    17. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    18. Chen, Ying & Liu, Yuxuan & Nam, Eun-Young & Zhang, Yang & Dahlak, Aida, 2023. "Exergoeconomic and exergoenvironmental analysis and optimization of an integrated double-flash-binary geothermal system and dual-pressure ORC using zeotropic mixtures; multi-objective optimization," Energy, Elsevier, vol. 283(C).
    19. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco, 2023. "Rigorous simulation of geothermal power plants to evaluate environmental performance of alternative configurations," Renewable Energy, Elsevier, vol. 207(C), pages 471-483.
    20. Unverdi, Murat & Cerci, Yunus, 2013. "Performance analysis of Germencik Geothermal Power Plant," Energy, Elsevier, vol. 52(C), pages 192-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920300751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.