IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p332-d129958.html
   My bibliography  Save this article

Assessment and Public Reporting of Geothermal Resources in Germany: Review and Outlook

Author

Listed:
  • Thorsten Agemar

    (Leibniz Institute for Applied Geophysics, Stilleweg 2, D-30655 Hannover, Germany)

  • Josef Weber

    (Leibniz Institute for Applied Geophysics, Stilleweg 2, D-30655 Hannover, Germany)

  • Inga S. Moeck

    (Leibniz Institute for Applied Geophysics, Stilleweg 2, D-30655 Hannover, Germany)

Abstract

Any geothermal resource assessment requires consistent and widely accepted terminology, methods, and reporting schemes that facilitate the comparison of geothermal resource estimates. This paper reviews common resource assessment methods, as well as reporting codes and terminology. Based on a rigorous analysis of the portrayed concepts and methods, it discusses the appropriateness of the existing reporting codes for sustainable utilization of geothermal resources in Germany. Since the last quantitative geothermal resource assessment in Germany was done 15 years ago, a revised report is overdue. Unlike fossil energy commodities, geothermal energy replenishes naturally and heat recuperation increases in created heat sinks. This replenishment process offers the opportunity for sustainable reservoir management in the case of moderate production rates or cyclic operation. Existing reporting codes, however, regard geothermal resources in a similar way to fossil resources or focus too much on field development rather than on the whole assessment process. In order to emphasize the renewability of geothermal energy, we propose the reporting of geothermal capacities (per doublet or per km 2 ) instead of recoverable heat energy which depends very much on project lifetime and other factors. As a first step, a new classification scheme for geothermal resources and reserves is outlined.

Suggested Citation

  • Thorsten Agemar & Josef Weber & Inga S. Moeck, 2018. "Assessment and Public Reporting of Geothermal Resources in Germany: Review and Outlook," Energies, MDPI, vol. 11(2), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:332-:d:129958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/332/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/332/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thorsten Agemar & Josef Weber & Rüdiger Schulz, 2014. "Deep Geothermal Energy Production in Germany," Energies, MDPI, vol. 7(7), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Simon Brown, 2023. "Revisiting the Deep Geothermal Potential of the Cheshire Basin, UK," Energies, MDPI, vol. 16(3), pages 1-19, January.
    2. Xia, Liangyu & Zhang, Yabo, 2019. "An overview of world geothermal power generation and a case study on China—The resource and market perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 411-423.
    3. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    4. Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.
    5. Guillem Piris & Ignasi Herms & Albert Griera & Montse Colomer & Georgina Arnó & Enrique Gomez-Rivas, 2021. "3DHIP-Calculator—A New Tool to Stochastically Assess Deep Geothermal Potential Using the Heat-In-Place Method from Voxel-Based 3D Geological Models," Energies, MDPI, vol. 14(21), pages 1-21, November.
    6. Maximilian Frick & Stefan Kranz & Ben Norden & David Bruhn & Sven Fuchs, 2022. "Geothermal Resources and ATES Potential of Mesozoic Reservoirs in the North German Basin," Energies, MDPI, vol. 15(6), pages 1-26, March.
    7. Eyerer, S. & Schifflechner, C. & Hofbauer, S. & Bauer, W. & Wieland, C. & Spliethoff, H., 2020. "Combined heat and power from hydrothermal geothermal resources in Germany: An assessment of the potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Weinand, Jann Michael & Kleinebrahm, Max & McKenna, Russell & Mainzer, Kai & Fichtner, Wolf, 2019. "Developing a combinatorial optimisation approach to design district heating networks based on deep geothermal energy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Mafalda M. Miranda & Jasmin Raymond & Chrystel Dezayes, 2020. "Uncertainty and Risk Evaluation of Deep Geothermal Energy Source for Heat Production and Electricity Generation in Remote Northern Regions," Energies, MDPI, vol. 13(16), pages 1-35, August.
    10. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    2. Strobel, Gion & Hagemann, Birger & Huppertz, Thiago Martins & Ganzer, Leonhard, 2020. "Underground bio-methanation: Concept and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. Davide Toselli & Florian Heberle & Dieter Brüggemann, 2019. "Techno-Economic Analysis of Hybrid Binary Cycles with Geothermal Energy and Biogas Waste Heat Recovery," Energies, MDPI, vol. 12(10), pages 1-18, May.
    4. Majorowicz, Jacek & Grasby, Stephen E., 2019. "Deep geothermal energy in Canadian sedimentary basins VS. Fossils based energy we try to replace – Exergy [KJ/KG] compared," Renewable Energy, Elsevier, vol. 141(C), pages 259-277.
    5. Knoblauch, Theresa A.K. & Trutnevyte, Evelina & Stauffacher, Michael, 2019. "Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study," Energy Policy, Elsevier, vol. 128(C), pages 807-816.
    6. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    7. Guangzheng Jiang & Yi Wang & Yizuo Shi & Chao Zhang & Xiaoyin Tang & Shengbiao Hu, 2016. "Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China," Energies, MDPI, vol. 9(10), pages 1-13, October.
    8. Wei-Tao Wu & Nadine Aubry & James F. Antaki & Mark L. McKoy & Mehrdad Massoudi, 2017. "Heat Transfer in a Drilling Fluid with Geothermal Applications," Energies, MDPI, vol. 10(9), pages 1-18, September.
    9. Daniilidis, Alexandros & Alpsoy, Betül & Herber, Rien, 2017. "Impact of technical and economic uncertainties on the economic performance of a deep geothermal heat system," Renewable Energy, Elsevier, vol. 114(PB), pages 805-816.
    10. Lorenzen, Peter & Alvarez-Bel, Carlos, 2022. "Variable cost evaluation of heating plants in district heating systems considering the temperature impact," Applied Energy, Elsevier, vol. 305(C).
    11. Jacek Majorowicz, 2021. "Review of the Heat Flow Mapping in Polish Sedimentary Basin across Different Tectonic Terrains," Energies, MDPI, vol. 14(19), pages 1-17, September.
    12. Welzl, Matthias & Heberle, Florian & Brüggemann, Dieter, 2020. "Experimental evaluation of nucleate pool boiling heat transfer correlations for R245fa and R1233zd(E) in ORC applications," Renewable Energy, Elsevier, vol. 147(P3), pages 2855-2864.
    13. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    14. Jacek Majorowicz & Stephen E. Grasby, 2021. "Deep Geothermal Heating Potential for the Communities of the Western Canadian Sedimentary Basin," Energies, MDPI, vol. 14(3), pages 1-37, January.
    15. Lei Chen & Yulong Pei & Feng Chai & Shukang Cheng, 2016. "Investigation of a Novel Mechanical to Thermal Energy Converter Based on the Inverse Problem of Electric Machines," Energies, MDPI, vol. 9(7), pages 1-19, July.
    16. Paul L. Younger, 2015. "Geothermal Energy: Delivering on the Global Potential," Energies, MDPI, vol. 8(10), pages 1-18, October.
    17. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects," Energies, MDPI, vol. 15(11), pages 1-20, June.
    18. Dawo, Fabian & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Kalina power plant part load modeling: Comparison of different approaches to model part load behavior and validation on real operating data," Energy, Elsevier, vol. 174(C), pages 625-637.
    19. Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.
    20. Guillem Piris & Ignasi Herms & Albert Griera & Montse Colomer & Georgina Arnó & Enrique Gomez-Rivas, 2021. "3DHIP-Calculator—A New Tool to Stochastically Assess Deep Geothermal Potential Using the Heat-In-Place Method from Voxel-Based 3D Geological Models," Energies, MDPI, vol. 14(21), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:332-:d:129958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.