IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3102-d562621.html
   My bibliography  Save this article

Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes

Author

Listed:
  • Anna Chmielowska

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Avenue, 30-059 Kraków, Poland)

  • Anna Sowiżdżał

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Avenue, 30-059 Kraków, Poland)

  • Barbara Tomaszewska

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Avenue, 30-059 Kraków, Poland)

Abstract

There are many oil and gas fields around the world where the vast number of wells have been abandoned or suspended, mainly due to the depletion of reserves. Those abandoned oil and gas wells (AOGWs) are often located in areas with a prospective geothermal potential and might be retrofitted to a geothermal system without high-cost drilling. In Poland, there are thousands of wells, either operating, abandoned or negative, that might be used for different geothermal applications. Thus, the aim of this paper is not only to review geothermal and petroleum facts about the Eastern Carpathian Foredeep, but also to find out the areas, geological structures or just AOGWs, which are the most prospective in case of geothermal utilization. Due to the inseparability of geological settings with both oil and gas, as well as geothermal conditionings, firstly, the geological background of the analyzed region was performed, considering mainly the autochthonous Miocene formation. Then, geothermal and petroleum detailed characteristics were made. In the case of geothermal parameters, such as formation’s thickness, temperatures, water-bearing horizons, wells’ capacities, mineralization and others were extensively examined. Considering oil and gas settings, insights into reservoir rocks, hydrocarbon traps and migration paths issues were created. Then, for evaluating geothermal parameters for specific hydrocarbon reservoirs, their depths were established based on publicly available wells data. Thereafter, the average temperatures for selected reservoirs were set. As the effect, it turned out that most of the deposits have average temperatures of 40/50 °C, nonetheless, there are a few characterized by higher (even around 80 °C) temperatures at reasonable depths.

Suggested Citation

  • Anna Chmielowska & Anna Sowiżdżał & Barbara Tomaszewska, 2021. "Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3102-:d:562621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xiaolei & Falcone, Gioia & Alimonti, Claudio, 2018. "A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs," Energy, Elsevier, vol. 142(C), pages 346-355.
    2. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    3. Leszek Pająk & Barbara Tomaszewska & Wiesław Bujakowski & Bogusław Bielec & Marta Dendys, 2020. "Review of the Low-Enthalpy Lower Cretaceous Geothermal Energy Resources in Poland as an Environmentally Friendly Source of Heat for Urban District Heating Systems," Energies, MDPI, vol. 13(6), pages 1-13, March.
    4. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    5. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Wang, Chang-Long, 2013. "Studies on geothermal power generation using abandoned oil wells," Energy, Elsevier, vol. 59(C), pages 248-254.
    6. Templeton, J.D. & Ghoreishi-Madiseh, S.A. & Hassani, F. & Al-Khawaja, M.J., 2014. "Abandoned petroleum wells as sustainable sources of geothermal energy," Energy, Elsevier, vol. 70(C), pages 366-373.
    7. Michał Kaczmarczyk & Anna Sowiżdżał & Barbara Tomaszewska, 2020. "Energetic and Environmental Aspects of Individual Heat Generation for Sustainable Development at a Local Scale—A Case Study from Poland," Energies, MDPI, vol. 13(2), pages 1-16, January.
    8. Krzysztof Sowiżdżał & Tomasz Słoczyński & Anna Sowiżdżał & Bartosz Papiernik & Grzegorz Machowski, 2020. "Miocene Biogas Generation System in the Carpathian Foredeep (SE Poland): A Basin Modeling Study to Assess the Potential of Unconventional Mudstone Reservoirs," Energies, MDPI, vol. 13(7), pages 1-26, April.
    9. Bu, Xianbiao & Ma, Weibin & Li, Huashan, 2012. "Geothermal energy production utilizing abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 41(C), pages 80-85.
    10. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    11. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    12. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    13. Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.
    14. Templeton, J.D. & Hassani, F. & Ghoreishi-Madiseh, S.A., 2016. "Study of effective solar energy storage using a double pipe geothermal heat exchanger," Renewable Energy, Elsevier, vol. 86(C), pages 173-181.
    15. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Xie, Kun, 2014. "Evaluation of working fluids for geothermal power generation from abandoned oil wells," Applied Energy, Elsevier, vol. 118(C), pages 238-245.
    16. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sławomir Falkowicz & Andrzej Urbaniec & Marek Stadtműller & Marcin Majkrzak, 2021. "A New Strategy for Pre-Selecting Gas Wells for the Water Shut-Off Treatment Based on Geological Integrated Data," Energies, MDPI, vol. 14(21), pages 1-21, November.
    2. Anna Sowiżdżał, 2022. "Geothermal Systems—An Overview," Energies, MDPI, vol. 15(17), pages 1-5, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    2. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    3. Jello, Josiane & Baser, Tugce, 2023. "Utilization of existing hydrocarbon wells for geothermal system development: A review," Applied Energy, Elsevier, vol. 348(C).
    4. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    5. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    6. Yuhao Zhu & Kewen Li & Changwei Liu & Mahlalela Bhekumuzi Mgijimi, 2019. "Geothermal Power Production from Abandoned Oil Reservoirs Using In Situ Combustion Technology," Energies, MDPI, vol. 12(23), pages 1-21, November.
    7. Kędzierski, Piotr & Nagórski, Zdzisław & Niezgoda, Tadeusz, 2016. "Determination of local values of heat transfer coefficient in geothermal models with internal functions method," Renewable Energy, Elsevier, vol. 92(C), pages 506-516.
    8. Tang, Hewei & Xu, Boyue & Hasan, A. Rashid & Sun, Zhuang & Killough, John, 2019. "Modeling wellbore heat exchangers: Fully numerical to fully analytical solutions," Renewable Energy, Elsevier, vol. 133(C), pages 1124-1135.
    9. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    10. Alimonti, C. & Soldo, E. & Bocchetti, D. & Berardi, D., 2018. "The wellbore heat exchangers: A technical review," Renewable Energy, Elsevier, vol. 123(C), pages 353-381.
    11. Cheng, Sharon W.Y. & Kurnia, Jundika C. & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2019. "Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method," Energy, Elsevier, vol. 188(C).
    12. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    13. Moussa, Tamer & Dehghanpour, Hassan, 2022. "Evaluating geothermal energy production from suspended oil and gas wells by using data mining," Renewable Energy, Elsevier, vol. 196(C), pages 1294-1307.
    14. Alimonti, C. & Soldo, E., 2016. "Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger," Renewable Energy, Elsevier, vol. 86(C), pages 292-301.
    15. Wang, Yi & Zhang, Liang & Cui, Guodong & Kang, Jun & Ren, Shaoran, 2019. "Geothermal development and power generation by circulating water and isobutane via a closed-loop horizontal well from hot dry rocks," Renewable Energy, Elsevier, vol. 136(C), pages 909-922.
    16. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Huang, Guangping & Liu, Wei Victor, 2021. "Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 165(P1), pages 334-349.
    17. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    18. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    19. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    20. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Hao & Yang, Ruitao & Wan, Rong & Shen, Lu, 2023. "Comparison of the experimental and numerical results of coaxial-type and U-type deep-buried pipes’ heat transfer performances," Renewable Energy, Elsevier, vol. 210(C), pages 95-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3102-:d:562621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.