IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v130y2019icp73-86.html
   My bibliography  Save this article

Analytical model for heat transfer between vertical fractures in fractured geothermal reservoirs during water injection

Author

Listed:
  • Abbasi, Mahdi
  • Mansouri, Mehrshad
  • Daryasafar, Amin
  • Sharifi, Mohammad

Abstract

In recent years, the demand for energy has vastly increased due to rapid commercialization. This increasing requirement has put a further strain on the conventional power generation units. In this paper, the problem of water injection into a fractured geothermal reservoir in Cartesian coordinate is considered and an exact analytical solution has been presented to describe the transient temperature distribution and advancement of the thermal front generate due to transient temperature of heat depleted water in a coupled fracture–matrix system at the scale of a single fracture. This solution is able to explain the following phenomena: convection transport in fractures, conduction heat transfers in matrix block and heat flux transfer between rock matrix and fracture. Also, the heat transfer shape factor can be defined by employing the convection-conduction equation in matrix and fracture. The derived analytical solution was used for investigating early and late time periods of heat transfer phenomenon in naturally fractured reservoirs. In addition, a conceptual definition for thermal recovery efficiency has been offered as the rest of included materials. In order to validate the predicted temperature by analytical model in fractured geothermal reservoirs, the presented analytical model is compared with numerical and pervious analytical model.

Suggested Citation

  • Abbasi, Mahdi & Mansouri, Mehrshad & Daryasafar, Amin & Sharifi, Mohammad, 2019. "Analytical model for heat transfer between vertical fractures in fractured geothermal reservoirs during water injection," Renewable Energy, Elsevier, vol. 130(C), pages 73-86.
  • Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:73-86
    DOI: 10.1016/j.renene.2018.06.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118306888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Slatlem Vik, Hedda & Salimzadeh, Saeed & Nick, Hamidreza M., 2018. "Heat recovery from multiple-fracture enhanced geothermal systems: The effect of thermoelastic fracture interactions," Renewable Energy, Elsevier, vol. 121(C), pages 606-622.
    2. Chandrasiri Ekneligoda, Thushan & Min, Ki-Bok, 2014. "Determination of optimum parameters of doublet system in a horizontally fractured geothermal reservoir," Renewable Energy, Elsevier, vol. 65(C), pages 152-160.
    3. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling," Renewable Energy, Elsevier, vol. 112(C), pages 151-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heinze, Thomas, 2021. "Constraining the heat transfer coefficient of rock fractures," Renewable Energy, Elsevier, vol. 177(C), pages 433-447.
    2. Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Zhan, Jie & Zhang, Yuanxin, 2024. "Study of fracture monitoring and heat extraction evaluation in geothermal reservoir modified by abandoned well pattern: Numerical models and case studies," Energy, Elsevier, vol. 296(C).
    3. Ma, Yueqiang & Zhang, Yanjun & Hu, Zhongjun & Yu, Ziwang & Zhou, Ling & Huang, Yibin, 2020. "Numerical investigation of heat transfer performance of water flowing through a reservoir with two intersecting fractures," Renewable Energy, Elsevier, vol. 153(C), pages 93-107.
    4. Zhang, Jiansong & Liu, Yongsheng & Lv, Jianguo & Gao, Wenlong, 2024. "The flow and heat transfer characteristics of supercritical mixed-phase CO2 and N2 in a 3D self-affine rough fracture," Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.
    2. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    3. Yu, Likui & Wu, Xiaotian & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Stratified rock hydraulic fracturing for enhanced geothermal system and fracture geometry evaluation via effective length," Renewable Energy, Elsevier, vol. 152(C), pages 713-723.
    4. Zhai, Haizhen & Jin, Guangrong & Liu, Lihua & Su, Zheng & Zeng, Yuchao & Liu, Jie & Li, Guangyu & Feng, Chuangji & Wu, Nengyou, 2023. "Parametric study of the geothermal exploitation performance from a HDR reservoir through multilateral horizontal wells: The Qiabuqia geothermal area, Gonghe Basin," Energy, Elsevier, vol. 275(C).
    5. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    6. Gao, Xuefeng & Zhang, Yanjun & Huang, Yibin & Ma, Yongjie & Zhao, Yi & Liu, Qiangbin, 2021. "Study on heat extraction considering the number and orientation of multilateral wells in a complex fractured geothermal reservoir," Renewable Energy, Elsevier, vol. 177(C), pages 833-852.
    7. Salimzadeh, S. & Grandahl, M. & Medetbekova, M. & Nick, H.M., 2019. "A novel radial jet drilling stimulation technique for enhancing heat recovery from fractured geothermal reservoirs," Renewable Energy, Elsevier, vol. 139(C), pages 395-409.
    8. Asai, Pranay & Panja, Palash & McLennan, John & Moore, Joseph, 2018. "Performance evaluation of enhanced geothermal system (EGS): Surrogate models, sensitivity study and ranking key parameters," Renewable Energy, Elsevier, vol. 122(C), pages 184-195.
    9. Aliyu, Musa D. & Archer, Rosalind A., 2021. "Numerical simulation of multifracture HDR geothermal reservoirs," Renewable Energy, Elsevier, vol. 164(C), pages 541-555.
    10. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    11. Aliyu, Musa D. & Chen, Hua-Peng, 2018. "Enhanced geothermal system modelling with multiple pore media: Thermo-hydraulic coupled processes," Energy, Elsevier, vol. 165(PA), pages 931-948.
    12. Saeed Mahmoodpour & Mrityunjay Singh & Ramin Mahyapour & Sri Kalyan Tangirala & Kristian Bär & Ingo Sass, 2022. "Numerical Simulation of Thermo-Hydro-Mechanical Processes at Soultz-sous-Forêts," Energies, MDPI, vol. 15(24), pages 1-21, December.
    13. Kang, Fangchao & Li, Yingchun & Tang, Chun'an & Huang, Xin & Li, Tianjiao, 2022. "Competition between cooling contraction and fluid overpressure on aperture evolution in a geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 704-716.
    14. Xin-Yue Duan & Di Huang & Wen-Xian Lei & Shi-Chao Chen & Zhao-Qin Huang & Chuan-Yong Zhu, 2023. "Investigation of Heat Extraction in an Enhanced Geothermal System Embedded with Fracture Networks Using the Thermal–Hydraulic–Mechanical Coupling Model," Energies, MDPI, vol. 16(9), pages 1-19, April.
    15. Willems, C.J.L. & M. Nick, H., 2019. "Towards optimisation of geothermal heat recovery: An example from the West Netherlands Basin," Applied Energy, Elsevier, vol. 247(C), pages 582-593.
    16. Zhang, Jiansong & Liu, Yongsheng & Lv, Jianguo & Gao, Wenlong, 2024. "The flow and heat transfer characteristics of supercritical mixed-phase CO2 and N2 in a 3D self-affine rough fracture," Energy, Elsevier, vol. 303(C).
    17. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    18. Song, Guofeng & Song, Xianzhi & Ji, Jiayan & Wu, Xiaoguang & Li, Gensheng & Xu, Fuqiang & Shi, Yu & Wang, Gaosheng, 2022. "Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 126-142.
    19. Isaka, B.L. Avanthi & Ranjith, P.G. & Rathnaweera, T.D. & Perera, M.S.A. & Kumari, W.G.P., 2019. "Influence of long-term operation of supercritical carbon dioxide based enhanced geothermal system on mineralogical and microstructurally-induced mechanical alteration of surrounding rock mass," Renewable Energy, Elsevier, vol. 136(C), pages 428-441.
    20. Marina Iorio & Alberto Carotenuto & Alfonso Corniello & Simona Di Fraia & Nicola Massarotti & Alessandro Mauro & Renato Somma & Laura Vanoli, 2020. "Low Enthalpy Geothermal Systems in Structural Controlled Areas: A Sustainability Analysis of Geothermal Resource for Heating Plant (The Mondragone Case in Southern Appennines, Italy)," Energies, MDPI, vol. 13(5), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:73-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.