IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5859-d442522.html
   My bibliography  Save this article

Recent Advances in Thermochemical Energy Storage via Solid–Gas Reversible Reactions at High Temperature

Author

Listed:
  • Laurie André

    (Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France)

  • Stéphane Abanades

    (Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire, 66120 Font-Romeu, France)

Abstract

The exploitation of solar energy, an unlimited and renewable energy resource, is of prime interest to support the replacement of fossil fuels by renewable energy alternatives. Solar energy can be used via concentrated solar power (CSP) combined with thermochemical energy storage (TCES) for the conversion and storage of concentrated solar energy via reversible solid–gas reactions, thus enabling round the clock operation and continuous production. Research is on-going on efficient and economically attractive TCES systems at high temperatures with long-term durability and performance stability. Indeed, the cycling stability with reduced or no loss in capacity over many cycles of heat charge and discharge of the material is pursued. The main thermochemical systems currently investigated are encompassing metal oxide redox pairs (MO x /MO x−1 ), non-stoichiometric perovskites (ABO 3 /ABO 3−δ ), alkaline earth metal carbonates and hydroxides (MCO 3 /MO, M(OH) 2 /MO with M = Ca, Sr, Ba). The metal oxides/perovskites can operate in open loop with air as the heat transfer fluid, while carbonates and hydroxides generally require closed loop operation with storage of the fluid (H 2 O or CO 2 ). Alternative sources of natural components are also attracting interest, such as abundant and low-cost ore minerals or recycling waste. For example, limestone and dolomite are being studied to provide for one of the most promising systems, CaCO 3 /CaO. Systems based on hydroxides are also progressing, although most of the recent works focused on Ca(OH) 2 /CaO. Mixed metal oxides and perovskites are also largely developed and attractive materials, thanks to the possible tuning of both their operating temperature and energy storage capacity. The shape of the material and its stabilization are critical to adapt the material for their integration in reactors, such as packed bed and fluidized bed reactors, and assure a smooth transition for commercial use and development. The recent advances in TCES systems since 2016 are reviewed, and their integration in solar processes for continuous operation is particularly emphasized.

Suggested Citation

  • Laurie André & Stéphane Abanades, 2020. "Recent Advances in Thermochemical Energy Storage via Solid–Gas Reversible Reactions at High Temperature," Energies, MDPI, vol. 13(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5859-:d:442522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia, B.Q. & Zhao, C.Y. & Yan, J. & Khosa, A.A., 2020. "Development of granular thermochemical heat storage composite based on calcium oxide," Renewable Energy, Elsevier, vol. 147(P1), pages 969-978.
    2. André, Laurie & Abanades, Stéphane & Flamant, Gilles, 2016. "Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 703-715.
    3. Zare Ghorbaei, S. & Ale Ebrahim, H., 2020. "Carbonation reaction of strontium oxide for thermochemical energy storage and CO2 removal applications: Kinetic study and reactor performance prediction," Applied Energy, Elsevier, vol. 277(C).
    4. Han, Rui & Gao, Jihui & Wei, Siyu & Su, Yanlin & Sun, Fei & Zhao, Guangbo & Qin, Yukun, 2018. "Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage," Applied Energy, Elsevier, vol. 231(C), pages 412-422.
    5. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    6. Sánchez Jiménez, Pedro E. & Perejón, Antonio & Benítez Guerrero, Mónica & Valverde, José M. & Ortiz, Carlos & Pérez Maqueda, Luis A., 2019. "High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 235(C), pages 543-552.
    7. Müller, Danny & Knoll, Christian & Gravogl, Georg & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Schreiner, Manfred & Harasek, Michael & Hradil, Klaudia & Werner, An, 2019. "Tuning the performance of MgO for thermochemical energy storage by dehydration – From fundamentals to phase impurities," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Albrecht, Kevin J. & Jackson, Gregory S. & Braun, Robert J., 2016. "Thermodynamically consistent modeling of redox-stable perovskite oxides for thermochemical energy conversion and storage," Applied Energy, Elsevier, vol. 165(C), pages 285-296.
    9. Bayon, Alicia & Bader, Roman & Jafarian, Mehdi & Fedunik-Hofman, Larissa & Sun, Yanping & Hinkley, Jim & Miller, Sarah & Lipiński, Wojciech, 2018. "Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications," Energy, Elsevier, vol. 149(C), pages 473-484.
    10. Ammendola, Paola & Raganati, Federica & Miccio, Francesco & Murri, Annalisa Natali & Landi, Elena, 2020. "Insights into utilization of strontium carbonate for thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 769-781.
    11. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    12. Benitez-Guerrero, Monica & Valverde, Jose Manuel & Perejon, Antonio & Sanchez-Jimenez, Pedro E. & Perez-Maqueda, Luis A., 2018. "Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power," Applied Energy, Elsevier, vol. 210(C), pages 108-116.
    13. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    14. Meroueh, Laureen & Yenduru, Karthik & Dasgupta, Arindam & Jiang, Duo & AuYeung, Nick, 2019. "Energy storage based on SrCO3 and Sorbents—A probabilistic analysis towards realizing solar thermochemical power plants," Renewable Energy, Elsevier, vol. 133(C), pages 770-786.
    15. Larissa Fedunik-Hofman & Alicia Bayon & Scott W. Donne, 2019. "Kinetics of Solid-Gas Reactions and Their Application to Carbonate Looping Systems," Energies, MDPI, vol. 12(15), pages 1-35, August.
    16. Sun, Hao & Li, Yingjie & Yan, Xianyao & Zhao, Jianli & Wang, Zeyan, 2020. "Thermochemical energy storage performance of Al2O3/CeO2 co-doped CaO-based material under high carbonation pressure," Applied Energy, Elsevier, vol. 263(C).
    17. Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
    18. Takasu, Hiroki & Ryu, Junichi & Kato, Yukitaka, 2017. "Application of lithium orthosilicate for high-temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 193(C), pages 74-83.
    19. Ortiz, C. & Romano, M.C. & Valverde, J.M. & Binotti, M. & Chacartegui, R., 2018. "Process integration of Calcium-Looping thermochemical energy storage system in concentrating solar power plants," Energy, Elsevier, vol. 155(C), pages 535-551.
    20. Funayama, Shigehiko & Takasu, Hiroki & Kim, Seon Tae & Kato, Yukitaka, 2020. "Thermochemical storage performance of a packed bed of calcium hydroxide composite with a silicon-based ceramic honeycomb support," Energy, Elsevier, vol. 201(C).
    21. Imponenti, Luca & Albrecht, Kevin J. & Kharait, Rounak & Sanders, Michael D. & Jackson, Gregory S., 2018. "Redox cycles with doped calcium manganites for thermochemical energy storage to 1000 °C," Applied Energy, Elsevier, vol. 230(C), pages 1-18.
    22. Tescari, S. & Singh, A. & Agrafiotis, C. & de Oliveira, L. & Breuer, S. & Schlögl-Knothe, B. & Roeb, M. & Sattler, C., 2017. "Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant," Applied Energy, Elsevier, vol. 189(C), pages 66-75.
    23. Schmidt, Matthias & Gutierrez, Andrea & Linder, Marc, 2017. "Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor," Applied Energy, Elsevier, vol. 188(C), pages 672-681.
    24. Gokon, Nobuyuki & Yawata, Takehiro & Bellan, Selvan & Kodama, Tatsuya & Cho, Hyun-Seok, 2019. "Thermochemical behavior of perovskite oxides based on LaxSr1-x(Mn, Fe, Co)O3-δ and BaySr1-yCoO3-δ redox system for thermochemical energy storage at high temperatures," Energy, Elsevier, vol. 171(C), pages 971-980.
    25. Yan, J. & Zhao, C.Y., 2016. "Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage," Applied Energy, Elsevier, vol. 175(C), pages 277-284.
    26. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    27. Chen, Xiaoyi & Jin, Xiaogang & Liu, Zhimin & Ling, Xiang & Wang, Yan, 2018. "Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping," Energy, Elsevier, vol. 155(C), pages 128-138.
    28. Stylianos Flegkas & Felix Birkelbach & Franz Winter & Hans Groenewold & Andreas Werner, 2019. "Profitability Analysis and Capital Cost Estimation of a Thermochemical Energy Storage System Utilizing Fluidized Bed Reactors and the Reaction System MgO/Mg(OH) 2," Energies, MDPI, vol. 12(24), pages 1-16, December.
    29. Pan, Z.H. & Zhao, C.Y., 2017. "Gas–solid thermochemical heat storage reactors for high-temperature applications," Energy, Elsevier, vol. 130(C), pages 155-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yihan Wang & Zicheng Zhang & Shuli Liu & Zhihao Wang & Yongliang Shen, 2023. "Development and Characteristics Analysis of Novel Hydrated Salt Composite Adsorbents for Thermochemical Energy Storage," Energies, MDPI, vol. 16(18), pages 1-21, September.
    2. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Carro, A. & Chacartegui, R. & Ortiz, C. & Arcenegui-Troya, J. & Pérez-Maqueda, L.A. & Becerra, J.A., 2023. "Integration of calcium looping and calcium hydroxide thermochemical systems for energy storage and power production in concentrating solar power plants," Energy, Elsevier, vol. 283(C).
    4. Carro, A. & Chacartegui, R. & Ortiz, C. & Becerra, J.A., 2022. "Analysis of a thermochemical energy storage system based on the reversible Ca(OH)2/CaO reaction," Energy, Elsevier, vol. 261(PA).
    5. Saman Setoodeh Jahromy & Mudassar Azam & Christian Jordan & Michael Harasek & Franz Winter, 2021. "The Potential Use of Fly Ash from the Pulp and Paper Industry as Thermochemical Energy and CO 2 Storage Material," Energies, MDPI, vol. 14(11), pages 1-21, June.
    6. Diana Carolina Guío-Pérez & Guillermo Martinez Castilla & David Pallarès & Henrik Thunman & Filip Johnsson, 2023. "Thermochemical Energy Storage with Integrated District Heat Production–A Case Study of Sweden," Energies, MDPI, vol. 16(3), pages 1-26, January.
    7. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    8. Lu, Yupeng & Xuan, Yimin & Teng, Liang & Liu, Jingrui & Wang, Busheng, 2024. "A cascaded thermochemical energy storage system enabling performance enhancement of concentrated solar power plants," Energy, Elsevier, vol. 288(C).
    9. Anti Kur & Jo Darkwa & John Calautit & Rabah Boukhanouf & Mark Worall, 2023. "Solid–Gas Thermochemical Energy Storage Materials and Reactors for Low to High-Temperature Applications: A Concise Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
    10. Williamson, Kyran & Liu, Yurong & Humphries, Terry D. & D'Angelo, Anita M. & Paskevicius, Mark & Buckley, Craig E., 2024. "Thermochemical energy storage in SrCO3 composites with SrTiO3 or SrZrO3," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Yang & Yingjie Li & Xianyao Yan & Jianli Zhao & Chunxiao Zhang, 2021. "Development of Thermochemical Heat Storage Based on CaO/CaCO 3 Cycles: A Review," Energies, MDPI, vol. 14(20), pages 1-26, October.
    2. Anti Kur & Jo Darkwa & John Calautit & Rabah Boukhanouf & Mark Worall, 2023. "Solid–Gas Thermochemical Energy Storage Materials and Reactors for Low to High-Temperature Applications: A Concise Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
    3. Xu, T.X. & Tian, X.K. & Khosa, A.A. & Yan, J. & Ye, Q. & Zhao, C.Y., 2021. "Reaction performance of CaCO3/CaO thermochemical energy storage with TiO2 dopant and experimental study in a fixed-bed reactor," Energy, Elsevier, vol. 236(C).
    4. Selvan Bellan & Tatsuya Kodama & Nobuyuki Gokon & Koji Matsubara, 2022. "A review on high‐temperature thermochemical heat storage: Particle reactors and materials based on solid–gas reactions," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    5. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Peng, Xinyue & Yao, Min & Root, Thatcher W. & Maravelias, Christos T., 2020. "Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 262(C).
    7. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    8. Sun, Hao & Li, Yingjie & Yan, Xianyao & Zhao, Jianli & Wang, Zeyan, 2020. "Thermochemical energy storage performance of Al2O3/CeO2 co-doped CaO-based material under high carbonation pressure," Applied Energy, Elsevier, vol. 263(C).
    9. Marín, P.E. & Milian, Y. & Ushak, S. & Cabeza, L.F. & Grágeda, M. & Shire, G.S.F., 2021. "Lithium compounds for thermochemical energy storage: A state-of-the-art review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Li, Caili & Li, Yingjie & Fang, Yi & Zhang, Chunxiao & Ren, Yu, 2024. "TiO2/MnFe2O4 co-modified alkaline papermaking waste for CaO-CaCO3 thermochemical energy storage," Applied Energy, Elsevier, vol. 362(C).
    11. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Nobuyuki Gokon & Fumiya Ohashi & Hiroki Sawaguri & Kosuke Hayashi, 2023. "Comparative Study of Heat-Discharging Kinetics of Fe-Substituted Mn 2 O 3 /Mn 3 O 4 Being Subjected to Long-Term Cycling for Thermochemical Energy Storage," Energies, MDPI, vol. 16(8), pages 1-23, April.
    13. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
    14. Sánchez Jiménez, Pedro E. & Perejón, Antonio & Benítez Guerrero, Mónica & Valverde, José M. & Ortiz, Carlos & Pérez Maqueda, Luis A., 2019. "High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 235(C), pages 543-552.
    15. Han, Xiangyu & Wang, Liang & Ling, Haoshu & Ge, Zhiwei & Lin, Xipeng & Dai, Xingjian & Chen, Haisheng, 2022. "Critical review of thermochemical energy storage systems based on cobalt, manganese, and copper oxides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
    17. Chen, Chen & Kong, Mingmin & Zhou, Shuiqing & Sepulveda, Abdon E. & Hong, Hui, 2020. "Energy storage efficiency optimization of methane reforming with CO2 reactors for solar thermochemical energy storage☆," Applied Energy, Elsevier, vol. 266(C).
    18. Yupeng Feng & Xuhan Li & Haowen Wu & Chaoran Li & Man Zhang & Hairui Yang, 2023. "Critical Review of Ca(OH) 2 /CaO Thermochemical Energy Storage Materials," Energies, MDPI, vol. 16(7), pages 1-23, March.
    19. Ma, Zhangke & Li, Yingjie & Zhang, Wan & Wang, Yuzhuo & Zhao, Jianli & Wang, Zeyan, 2020. "Energy storage and attrition performance of limestone under fluidization during CaO/CaCO3 cycles," Energy, Elsevier, vol. 207(C).
    20. Böhm, Hans & Lindorfer, Johannes, 2019. "Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials," Energy, Elsevier, vol. 179(C), pages 1246-1264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5859-:d:442522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.