Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Qiu, Yu & He, Ya-Ling & Wu, Ming & Zheng, Zhang-Jing, 2016. "A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver," Renewable Energy, Elsevier, vol. 97(C), pages 129-144.
- Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2019. "A review of the application performances of concentrated solar power systems," Applied Energy, Elsevier, vol. 255(C).
- Müller, Danny & Knoll, Christian & Gravogl, Georg & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Schreiner, Manfred & Harasek, Michael & Hradil, Klaudia & Werner, An, 2019. "Tuning the performance of MgO for thermochemical energy storage by dehydration – From fundamentals to phase impurities," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Royo, Patricia & Acevedo, Luis & Ferreira, Victor J. & García-Armingol, Tatiana & López-Sabirón, Ana M. & Ferreira, Germán, 2019. "High-temperature PCM-based thermal energy storage for industrial furnaces installed in energy-intensive industries," Energy, Elsevier, vol. 173(C), pages 1030-1040.
- He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
- Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
- Zarza, Eduardo & Valenzuela, Loreto & León, Javier & Hennecke, Klaus & Eck, Markus & Weyers, H.-Dieter & Eickhoff, Martin, 2004. "Direct steam generation in parabolic troughs: Final results and conclusions of the DISS project," Energy, Elsevier, vol. 29(5), pages 635-644.
- Tang, Ningning & Zhang, Yuning & Niu, Yuguang & Du, Xiaoze, 2018. "Solar energy curtailment in China: Status quo, reasons and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 509-528.
- Cheng, Z.D. & He, Y.L. & Cui, F.Q., 2013. "A new modelling method and unified code with MCRT for concentrating solar collectors and its applications," Applied Energy, Elsevier, vol. 101(C), pages 686-698.
- Qiu, Yu & He, Ya-Ling & Cheng, Ze-Dong & Wang, Kun, 2015. "Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods," Applied Energy, Elsevier, vol. 146(C), pages 162-173.
- Poullikkas, Andreas, 2009. "Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region--A case study for the island of Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2474-2484, December.
- Hertel, Julian D. & Canals, Vincent & Pujol-Nadal, Ramón, 2020. "On-site optical characterization of large-scale solar collectors through ray-tracing optimization," Applied Energy, Elsevier, vol. 262(C).
- Benoit, H. & Spreafico, L. & Gauthier, D. & Flamant, G., 2016. "Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 298-315.
- Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
- Wang, Qiliang & Yang, Honglun & Zhong, Shuai & Huang, Yihang & Hu, Mingke & Cao, Jingyu & Pei, Gang & Yang, Hongxing, 2020. "Comprehensive experimental testing and analysis on parabolic trough solar receiver integrated with radiation shield," Applied Energy, Elsevier, vol. 268(C).
- Laurie André & Stéphane Abanades, 2020. "Recent Advances in Thermochemical Energy Storage via Solid–Gas Reversible Reactions at High Temperature," Energies, MDPI, vol. 13(22), pages 1-23, November.
- Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland & Cygan, David & Abbasi, Hamid, 2019. "Experimental performance of a two-stage (50×) parabolic trough collector tested to 650 °C using a suspended particulate heat transfer fluid," Applied Energy, Elsevier, vol. 240(C), pages 436-445.
- He, Y.L. & Cheng, Z.D. & Cui, F.Q. & Li, Z.Y. & Li, D., 2012. "Numerical investigations on a pressurized volumetric receiver: Solar concentrating and collecting modelling," Renewable Energy, Elsevier, vol. 44(C), pages 368-379.
- Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
- Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
- Wang, Qiliang & Shen, Boxu & Huang, Junchao & Yang, Honglun & Pei, Gang & Yang, Hongxing, 2021. "A spectral self-regulating parabolic trough solar receiver integrated with vanadium dioxide-based thermochromic coating," Applied Energy, Elsevier, vol. 285(C).
- Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope," Renewable Energy, Elsevier, vol. 138(C), pages 793-804.
- Wu, Ming & Li, Mingjia & Xu, Chao & He, Yaling & Tao, Wenquan, 2014. "The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium," Applied Energy, Elsevier, vol. 113(C), pages 1363-1371.
- André, Laurie & Abanades, Stéphane & Flamant, Gilles, 2016. "Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 703-715.
- Yu, Qiang & Wang, Zhifeng & Xu, Ershu, 2014. "Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field," Applied Energy, Elsevier, vol. 136(C), pages 417-430.
- Schramek, Philipp & Mills, David R., 2004. "Heliostats for maximum ground coverage," Energy, Elsevier, vol. 29(5), pages 701-713.
- He, Caitou & Duan, Xiaoyue & Zhao, Yuhong & Feng, Jieqing, 2019. "An analytical flux density distribution model with a closed-form expression for a flat heliostat," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
- Pardo, P. & Deydier, A. & Anxionnaz-Minvielle, Z. & Rougé, S. & Cabassud, M. & Cognet, P., 2014. "A review on high temperature thermochemical heat energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 591-610.
- Wei, Xiudong & Lu, Zhenwu & Yu, Weixing & Xu, Wenbin, 2013. "Ray tracing and simulation for the beam-down solar concentrator," Renewable Energy, Elsevier, vol. 50(C), pages 161-167.
- González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
- Gordon, Jeffrey M. & Fasquelle, Thomas & Nadal, Elie & Vossier, Alexis, 2021. "Providing large-scale electricity demand with photovoltaics and molten-salt storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Myers, Philip D. & Alam, Tanvir E. & Kamal, Rajeev & Goswami, D.Y. & Stefanakos, E., 2016. "Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer," Applied Energy, Elsevier, vol. 165(C), pages 225-233.
- Zhang, Qiangqiang & Li, Xin & Wang, Zhifeng & Zhang, Jinbai & El-Hefni, Baligh & Xu, Li, 2015. "Modeling and simulation of a molten salt cavity receiver with Dymola," Energy, Elsevier, vol. 93(P2), pages 1373-1384.
- Sciacovelli, A. & Gagliardi, F. & Verda, V., 2015. "Maximization of performance of a PCM latent heat storage system with innovative fins," Applied Energy, Elsevier, vol. 137(C), pages 707-715.
- Collado, Francisco J. & Guallar, Jesús, 2013. "A review of optimized design layouts for solar power tower plants with campo code," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 142-154.
- San Miguel, G. & Corona, B., 2018. "Economic viability of concentrated solar power under different regulatory frameworks in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 205-218.
- Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
- Calvet, Nicolas & Gomez, Judith C. & Faik, Abdessamad & Roddatis, Vladimir V. & Meffre, Antoine & Glatzmaier, Greg C. & Doppiu, Stefania & Py, Xavier, 2013. "Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system," Applied Energy, Elsevier, vol. 109(C), pages 387-393.
- Cruz, N.C. & Redondo, J.L. & Berenguel, M. & Álvarez, J.D. & Ortigosa, P.M., 2017. "Review of software for optical analyzing and optimizing heliostat fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1001-1018.
- Jafrancesco, David & Cardoso, Joao P. & Mutuberria, Amaia & Leonardi, Erminia & Les, Iñigo & Sansoni, Paola & Francini, Franco & Fontani, Daniela, 2018. "Optical simulation of a central receiver system: Comparison of different software tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 792-803.
- Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
- Jorge M. Llamas & David Bullejos & Manuel Ruiz de Adana, 2019. "Optimal Operation Strategies into Deregulated Markets for 50 MW e Parabolic Trough Solar Thermal Power Plants with Thermal Storage," Energies, MDPI, vol. 12(5), pages 1-18, March.
- Prieto, Cristina & Cooper, Patrick & Fernández, A. Inés & Cabeza, Luisa F., 2016. "Review of technology: Thermochemical energy storage for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 909-929.
- Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
- Carra, Elena & Marzo, Aitor & Ballestrín, Jesús & Polo, Jesús & Barbero, Javier & Alonso-Montesinos, Joaquín & Monterreal, Rafael & Abreu, Edgar F.M. & Fernández-Reche, Jesús, 2020. "Atmospheric extinction levels of solar radiation using aerosol optical thickness satellite data. Validation methodology with measurement system," Renewable Energy, Elsevier, vol. 149(C), pages 1120-1132.
- Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
- Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
- Nunes, V.M.B. & Queirós, C.S. & Lourenço, M.J.V. & Santos, F.J.V. & Nieto de Castro, C.A., 2016. "Molten salts as engineering fluids – A review," Applied Energy, Elsevier, vol. 183(C), pages 603-611.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Enkhbayar Shagdar & Bachirou Guene Lougou & Batmunkh Sereeter & Yong Shuai & Azeem Mustafa & Enkhjin Ganbold & Dongmei Han, 2022. "Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions," Energies, MDPI, vol. 15(4), pages 1-24, February.
- Emanuela Privitera & Riccardo Caponetto & Fabio Matera & Salvatore Vasta, 2022. "Impact of Geometry on a Thermal-Energy Storage Finned Tube during the Discharging Process," Energies, MDPI, vol. 15(21), pages 1-22, October.
- Georgios E. Arnaoutakis & Dimitris A. Katsaprakakis, 2024. "Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems," Energies, MDPI, vol. 17(3), pages 1-12, January.
- Ramalingam Venkatesaperumal & Kutbudeen Syed Jafar & Perumal Venkatesan Elumalai & Mohamed Abbas & Erdem Cuce & Saboor Shaik & Chanduveetil Ahamed Saleel, 2022. "Heat Transfer Studies on Solar Parabolic trough Collector Using Corrugated Tube Receiver with Conical Strip Inserts," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
- Gianfranco Di Lorenzo & Erika Stracqualursi & Giovanni Vescio & Rodolfo Araneo, 2024. "State of the Art of Renewable Sources Potentialities in the Middle East: A Case Study in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 17(8), pages 1-27, April.
- Chenyang Wang & Jialin Guo & Jingyu Li & Xiaomei Zeng & Vasiliy Pelenovich & Jun Zhang & Bing Yang & Xianbin Wang & Yu Du & Yikun Lei & Naibing Lu, 2023. "Microstructure of Surface Pollutants and Brush-Based Dry Cleaning of a Trough Concentrating Solar Power Station," Energies, MDPI, vol. 16(7), pages 1-15, April.
- Pinar Mert Cuce & Erdem Cuce & Saad Alshahrani & Shaik Saboor & Harun Sen & Ibham Veza & C. Ahamed Saleel, 2022. "Performance Evaluation of Solar Chimney Power Plants with Bayburt Stone and Basalt on the Ground as Natural Energy Storage Material," Sustainability, MDPI, vol. 14(17), pages 1-14, September.
- Arnaoutakis, Georgios E. & Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2022. "Dynamic modeling of combined concentrating solar tower and parabolic trough for increased day-to-day performance," Applied Energy, Elsevier, vol. 323(C).
- Georgios E. Arnaoutakis & Gudrun Kocher-Oberlehner & Dimitris Al. Katsaprakakis, 2023. "Criteria-Based Model of Hybrid Photovoltaic–Wind Energy System with Micro-Compressed Air Energy Storage," Mathematics, MDPI, vol. 11(2), pages 1-15, January.
- Yi’an Wang & Zhe Wu & Dong Ni, 2024. "Large-Scale Optimization among Photovoltaic and Concentrated Solar Power Systems: A State-of-the-Art Review and Algorithm Analysis," Energies, MDPI, vol. 17(17), pages 1-38, August.
- Mathieu David & Joaquín Alonso-Montesinos & Josselin Le Gal La Salle & Philippe Lauret, 2023. "Probabilistic Solar Forecasts as a Binary Event Using a Sky Camera," Energies, MDPI, vol. 16(20), pages 1-18, October.
- Kexin Zhang & Ying Su & Haiyu Wang & Qian Wang & Kai Wang & Yisen Niu & Jifeng Song, 2022. "Highly Concentrated Solar Flux of Large Fresnel Lens Using CCD Camera-Based Method," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
- Georgios E. Arnaoutakis & Georgia Kefala & Eirini Dakanali & Dimitris Al. Katsaprakakis, 2022. "Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes," Energies, MDPI, vol. 15(18), pages 1-23, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
- Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
- Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
- Wang, Qiliang & Li, Guiqiang & Cao, Jingyu & Hu, Mingke & Pei, Gang & Yang, Hongxing, 2022. "An analytical study on optimal spectral characters of solar absorbing coating and thermal performance potential of solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 1300-1315.
- Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
- Zheng, Zhang-Jing & Li, Ming-Jia & He, Ya-Ling, 2017. "Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 1152-1161.
- San Miguel, G. & Corona, B., 2018. "Economic viability of concentrated solar power under different regulatory frameworks in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 205-218.
- Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
- Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
- Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
- Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
- Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
- Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
- Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
More about this item
Keywords
concentrating solar power; geometrical optics; phase-change energy storage; renewable energy system integration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6229-:d:646967. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.