Thermochemical storage performance of a packed bed of calcium hydroxide composite with a silicon-based ceramic honeycomb support
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.117673
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
- Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
- Schmidt, Matthias & Linder, Marc, 2017. "Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design," Applied Energy, Elsevier, vol. 203(C), pages 594-607.
- Takasu, Hiroki & Ryu, Junichi & Kato, Yukitaka, 2017. "Application of lithium orthosilicate for high-temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 193(C), pages 74-83.
- Ranjha, Qasim & Oztekin, Alparslan, 2017. "Numerical analyses of three-dimensional fixed reaction bed for thermochemical energy storage," Renewable Energy, Elsevier, vol. 111(C), pages 825-835.
- Schmidt, Matthias & Gutierrez, Andrea & Linder, Marc, 2017. "Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor," Applied Energy, Elsevier, vol. 188(C), pages 672-681.
- Yan, J. & Zhao, C.Y., 2016. "Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage," Applied Energy, Elsevier, vol. 175(C), pages 277-284.
- Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
- Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
- Wang, Mengyi & Chen, Li & He, Pu & Tao, Wen-Quan, 2019. "Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors," Energy, Elsevier, vol. 181(C), pages 417-428.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ye, H. & Tao, Y.B. & Wu, Z.H., 2022. "Performance improvement of packed bed thermochemical heat storage by enhancing heat transfer and vapor transmission," Applied Energy, Elsevier, vol. 326(C).
- Laurie André & Stéphane Abanades, 2020. "Recent Advances in Thermochemical Energy Storage via Solid–Gas Reversible Reactions at High Temperature," Energies, MDPI, vol. 13(22), pages 1-23, November.
- Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Rose, Andrew & Taylor, Robert A., 2022. "Optical analysis of a semi-transparent packed bed of spheres for next-generation volumetric solar receivers," Energy, Elsevier, vol. 252(C).
- Yupeng Feng & Xuhan Li & Haowen Wu & Chaoran Li & Man Zhang & Hairui Yang, 2023. "Critical Review of Ca(OH) 2 /CaO Thermochemical Energy Storage Materials," Energies, MDPI, vol. 16(7), pages 1-23, March.
- Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Anti Kur & Jo Darkwa & John Calautit & Rabah Boukhanouf & Mark Worall, 2023. "Solid–Gas Thermochemical Energy Storage Materials and Reactors for Low to High-Temperature Applications: A Concise Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Mengyi & Chen, Li & Zhou, Yuhao & Tao, Wen-Quan, 2022. "Numerical simulation of the calcium hydroxide/calcium oxide system dehydration reaction in a shell-tube reactor," Applied Energy, Elsevier, vol. 312(C).
- Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
- Schmidt, Matthias & Linder, Marc, 2017. "Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design," Applied Energy, Elsevier, vol. 203(C), pages 594-607.
- Wang, Mengyi & Chen, Li & He, Pu & Tao, Wen-Quan, 2019. "Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors," Energy, Elsevier, vol. 181(C), pages 417-428.
- Jun Yan & Lei Jiang & Changying Zhao, 2023. "Numerical Simulation of the Ca(OH) 2 /CaO Thermochemical Heat Storage Process in an Internal Heating Fixed-Bed Reactor," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
- Wang, Wei & Shuai, Yong & Yang, Jiangyu & Lougou, Bachirou Guene & Huang, Yudong, 2023. "Heat transfer and heat storage characteristics of calcium hydroxide/oxide based on shell-tube thermochemical energy storage device," Renewable Energy, Elsevier, vol. 218(C).
- Luo, Ji-Wang & Chen, Li & Wang, MengYi & Xia, Yang & Tao, WenQuan, 2022. "Particle-scale study of coupled physicochemical processes in Ca(OH)2 dehydration using the lattice Boltzmann method," Energy, Elsevier, vol. 250(C).
- Takasu, Hiroki & Hoshino, Hitoshi & Tamura, Yoshiro & Kato, Yukitaka, 2019. "Performance evaluation of thermochemical energy storage system based on lithium orthosilicate and zeolite," Applied Energy, Elsevier, vol. 240(C), pages 1-5.
- Risthaus, Kai & Linder, Marc & Schmidt, Matthias, 2022. "Experimental investigation of a novel mechanically fluidized bed reactor for thermochemical energy storage with calcium hydroxide/calcium oxide," Applied Energy, Elsevier, vol. 315(C).
- Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
- Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
- Takasu, Hiroki & Ryu, Junichi & Kato, Yukitaka, 2017. "Application of lithium orthosilicate for high-temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 193(C), pages 74-83.
- Risthaus, Kai & Bürger, Inga & Linder, Marc & Schmidt, Matthias, 2020. "Numerical analysis of the hydration of calcium oxide in a fixed bed reactor based on lab-scale experiments," Applied Energy, Elsevier, vol. 261(C).
- Ye, H. & Tao, Y.B. & Wu, Z.H., 2022. "Performance improvement of packed bed thermochemical heat storage by enhancing heat transfer and vapor transmission," Applied Energy, Elsevier, vol. 326(C).
- Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
- Laurie André & Stéphane Abanades, 2020. "Recent Advances in Thermochemical Energy Storage via Solid–Gas Reversible Reactions at High Temperature," Energies, MDPI, vol. 13(22), pages 1-23, November.
- Peng, Xinyue & Yao, Min & Root, Thatcher W. & Maravelias, Christos T., 2020. "Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 262(C).
- Yupeng Feng & Xuhan Li & Haowen Wu & Chaoran Li & Man Zhang & Hairui Yang, 2023. "Critical Review of Ca(OH) 2 /CaO Thermochemical Energy Storage Materials," Energies, MDPI, vol. 16(7), pages 1-23, March.
- Liu, Jiatao & Lu, Shilei, 2024. "Thermal performance of packed-bed latent heat storage tank integrated with flat-plate collectors under intermittent loads of building heating," Energy, Elsevier, vol. 299(C).
- Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
More about this item
Keywords
Thermochemical energy storage; Calcium hydroxide; Ceramic honeycomb; Silicon carbide; Packed bed reactor;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307805. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.