IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i5p2262-2289.html
   My bibliography  Save this article

A review on biomass as a fuel for boilers

Author

Listed:
  • Saidur, R.
  • Abdelaziz, E.A.
  • Demirbas, A.
  • Hossain, M.S.
  • Mekhilef, S.

Abstract

Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40-50Â years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO2 and NOx emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

Suggested Citation

  • Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:5:p:2262-2289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(11)00057-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    2. Huifeng Li & Xuanwei Zhang, 2010. "Study on Environmental Tax: A Case of China," International Journal of Asian Business and Information Management (IJABIM), IGI Global, vol. 1(2), pages 12-23, April.
    3. Sasaki, Nophea & Knorr, Wolfgang & Foster, David R. & Etoh, Hiroko & Ninomiya, Hiroshi & Chay, Sengtha & Kim, Sophanarith & Sun, Sengxi, 2009. "Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020," Applied Energy, Elsevier, vol. 86(Supplemen), pages 140-150, November.
    4. G. Faninger, 2003. "Towards sustainable development in Austria: renewable energy contributions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(2), pages 177-188, June.
    5. Mahmoud, A. & Shuhaimi, M. & Abdel Samed, M., 2009. "A combined process integration and fuel switching strategy for emissions reduction in chemical process plants," Energy, Elsevier, vol. 34(2), pages 190-195.
    6. Rafael Reuveny & Andreea S Mihalache-O'Keef & Quan Li, 2010. "The effect of warfare on the environment," Journal of Peace Research, Peace Research Institute Oslo, vol. 47(6), pages 749-761, November.
    7. Mariana BRAN & Dan BOBOC & Raluca Andreea ION & Bebe NEGOESCU, 2010. "Environmental Risk In Romanian Vineyards," Internal Auditing and Risk Management, Athenaeum University of Bucharest, vol. 2(18), pages 47-54, June.
    8. Erol, M. & Haykiri-Acma, H. & Küçükbayrak, S., 2010. "Calorific value estimation of biomass from their proximate analyses data," Renewable Energy, Elsevier, vol. 35(1), pages 170-173.
    9. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    10. Andre Faaij, 2006. "Modern Biomass Conversion Technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 335-367, March.
    11. Abbasi, Tasneem & Abbasi, S.A., 2010. "Biomass energy and the environmental impacts associated with its production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 919-937, April.
    12. Saidur, R. & Mekhilef, S., 2010. "Energy use, energy savings and emission analysis in the Malaysian rubber producing industries," Applied Energy, Elsevier, vol. 87(8), pages 2746-2758, August.
    13. Abbasi, S. A. & Abbasi, Naseema, 2000. "The likely adverse environmental impacts of renewable energy sources," Applied Energy, Elsevier, vol. 65(1-4), pages 121-144, April.
    14. Tock, Jing Yan & Lai, Chin Lin & Lee, Keat Teong & Tan, Kok Tat & Bhatia, Subhash, 2010. "Banana biomass as potential renewable energy resource: A Malaysian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 798-805, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 621-632.
    2. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    3. Turconi, Roberto & Tonini, Davide & Nielsen, Christian F.B. & Simonsen, Christian G. & Astrup, Thomas, 2014. "Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study," Applied Energy, Elsevier, vol. 132(C), pages 66-73.
    4. Vargas-Moreno, J.M. & Callejón-Ferre, A.J. & Pérez-Alonso, J. & Velázquez-Martí, B., 2012. "A review of the mathematical models for predicting the heating value of biomass materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3065-3083.
    5. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    6. Francesca Nardin & Fabrizio Mazzetto, 2014. "Mapping of Biomass Fluxes: A Method for Optimizing Biogas-Refinery of Livestock Effluents," Sustainability, MDPI, vol. 6(9), pages 1-21, September.
    7. Saidur, R. & Atabani, A.E. & Mekhilef, S., 2011. "A review on electrical and thermal energy for industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2073-2086, May.
    8. Abbasi, Tasneem & Abbasi, S.A., 2010. "Production of clean energy by anaerobic digestion of phytomass--New prospects for a global warming amelioration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1653-1659, August.
    9. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    10. Callejón-Ferre, A.J. & Velázquez-Martí, B. & López-Martínez, J.A. & Manzano-Agugliaro, F., 2011. "Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 948-955, February.
    11. Tye, Ying Ying & Lee, Keat Teong & Wan Abdullah, Wan Nadiah & Leh, Cheu Peng, 2011. "Second-generation bioethanol as a sustainable energy source in Malaysia transportation sector: Status, potential and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4521-4536.
    12. Premalatha, M. & Tauseef, S.M. & Abbasi, Tasneem & Abbasi, S.A., 2013. "The promise and the performance of the world's first two zero carbon eco-cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 660-669.
    13. Abbasi, Tasneem & Premalatha, M. & Abbasi, S.A., 2011. "The return to renewables: Will it help in global warming control?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 891-894, January.
    14. Nunes, L.J.R. & Causer, T.P. & Ciolkosz, D., 2020. "Biomass for energy: A review on supply chain management models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Foo, K.Y., 2015. "A vision on the opportunities, policies and coping strategies for the energy security and green energy development in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1477-1498.
    16. Abbasi, Tasneem & Abbasi, S.A., 2011. "'Renewable' hydrogen: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3034-3040, August.
    17. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    18. Abbasi, S.A. & Tabassum-Abbasi, & Abbasi, Tasneem, 2016. "Impact of wind-energy generation on climate: A rising spectre," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1591-1598.
    19. Abbasi, Tasneem & Abbasi, S.A., 2011. "Small hydro and the environmental implications of its extensive utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2134-2143, May.
    20. R. N. Ossei-Bremang & F. Kemausuor, 2021. "A decision support system for the selection of sustainable biomass resources for bioenergy production," Environment Systems and Decisions, Springer, vol. 41(3), pages 437-454, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:5:p:2262-2289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.